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ABSTRACT Although neuroscience has made considerable progress in recent decades by proposing robust
models that explain the mechanisms of attention and perception in humans, emulating this capability using
computational techniques remains complex. It was not until the development of models such as Visual
Transformers (ViT) that it became possible to partially replicate this uniquely human trait. Themain objective
of this study was to explore the extent to which attention models, such as ViT, can reproduce the manner
in which people distribute their visual attention when exposed to various stimuli, particularly in the context
of handcrafted objects. Human fixations (i.e., attention) were recorded using an eye tracker, while the ViT
model processed the same images to generate attention maps to evaluate the degree of similarity between
the two patterns. For this purpose, heatmaps were constructed, and quantitative metrics were applied to
assess their similarity. The results revealed areas of convergence and significant differences, highlighting
the current limitations of computational models in capturing the more subtle aspects of human perception.
This comparison not only helps us better understand the capabilities of ViT but also provides a foundation for
reflecting on future improvements in automated attention models and their potential applications in contexts
where visual interpretation is crucial.

INDEX TERMS Attention, eye-tracker, experiments, comparison, human attention, multihead attention,
transformer, visual transformers, vision computer, vision transformers.

I. INTRODUCTION
Visual attention is an essential component of human per-
ception and plays a crucial role in our ability to process
and understand our surrounding environment. This ability
enables us to focus on the most salient features of our
complex surroundings rather than compressing everything
into a static representation [51]. Attention is not limited to
visible eye movements, that is, shifting the gaze toward an
object or location in the visual field (a process known as overt
attention [16]), but also manifests as a mental mechanism that
shifts the focus of attention without moving the eyes (covert
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attention). Thesemental shifts guide our focus without visible
changes in gaze direction [39], influencing how we interpret
and process information.

Since the emergence of the first theories of attention in the
1980s ([2], [25], [26], [38], [40], [49]), our understanding of
how attention manifests in various contexts has significantly
advanced. Once a purely theoretical idea, attention is now
understood as a physiological and cognitive reality that has
drawn the attention of the scientific community for decades.
This has inspired the development of computer vision models
that emulate the characteristics of the human visual system,
providing a valuable perspective for both enhancing artificial
intelligence and deepening our understanding of human
cognition [20].
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Attention mechanisms, proposed for machine translation,
dynamically assign importance to various parts of a sequence
based on context [3]. This approach adjusts the weights
according to the features of the input information. In the
domain of digital images, attention mechanisms focus
on the most relevant regions and discard less important
areas [20]. Inspired by the human cognitive system, these
mechanisms emulate cognitive awareness by amplifying
critical information and emphasizing essential data [22].

In deep learning, attention mechanisms were introduced
in 2016 to address the inherent challenge of retaining and
recalling relevant information in encoder-decoder architec-
tures while processing data sequences [3]. This challenge,
known as the forgetting problem, manifests as a progressive
loss of critical information as the network advances in
sequence analysis. A year later, in 2017, the transformer
architecture marked a turning point in the implementation
of attention mechanisms [48]. By eliminating the need
for recurrences and convolutions, transformers efficiently
capture the relative importance of each element in an input
sequence. This breakthrough revolutionized sequential data
processing in deep learning models, significantly improv-
ing the modeling capacity and performance for complex
sequence interpretation tasks.

A distinctive aspect of the transformer architecture is the
implementation of an advanced form of attention, known
as multi-head attention [48]. This mechanism combines
multiple attention layers operating in parallel, each of
which applies different linear transformations to the same
input. Instead of computing attention only once, multi-
head attention splits the input into fixed-size segments and
independently computes the scaled dot product attention
for each segment [11]. This technique allows the model to
simultaneously focus on different representation subspaces
and positions within the data, thereby enhancing information
processing and interaction. Compared with simpler attention
approaches, the multi-head mechanism improves the model’s
ability to understand and process complex data effectively
and efficiently [48].

In recent years, several studies have significantly con-
tributed to bridging the gap between human attention
patterns and those generated by Visual Transformers (ViT).
Cadoni et al. investigated the correlation between both types
of attention by developing a dataset based on human fixations
on facial images, demonstrating that ViT can replicate
human patterns by highlighting discriminative regions [9].
Complementarily, Park and Kim analyzed self-attention
mechanisms in ViT and concluded that they improve both
accuracy and generalization by flattening loss landscapes
and act as low-pass filters, unlike CNNs, which function as
high-pass filters [36].

This study proposes a comparative analysis between
the attention mechanism of the visual transformer (ViT)
architecture—introduced by Dosovitskiy et al. [14] and
the attention patterns observed in a group of participants.
In this experiment, participants observed a set of images

containing handcrafted objects (described in detail in the
Methodology section), and heat maps were generated to
reflect their attention patterns. For comparison, the images
used in the experiment were processed using a pretrained
ViT model to produce equivalent heatmaps. This study aims
to quantitatively and qualitatively evaluate the similarities
and differences between human and ViT-generated attention
patterns.

This work contributes to the literature in two main
ways. The first is a quantitative comparative analysis of
human attention patterns and those of the ViT model,
focusing on human fixation on specific images. Various
metrics will be used, such as Wasserstein distance and its
variants, maximum mean discrepancy, Hellinger distance,
total variation distance, and Kullback-Leibler divergence,
among others. The second contribution is the creation of a
dataset documenting eye movements and fixations collected
through an experiment in which participants observed images
of handcrafted objects.

II. STATE OF ART
A. ATTENTION TO THE VISION OF THE HUMAN
Visual attention in humans is a key mechanism of the nervous
system that enables us to perceive, process, and highlight
specific locations, objects, or features within our visual
field. Although we are not always aware of its operation,
visual attention plays a fundamental role in visual perception
and in various aspects of our interaction with the visual
environment, such as learning and memory.

Research on visual attention has undergone remarkable
evolution since Treisman and Gelade laid the theoretical
foundations by proposing the feature integration theory of
attention [46]. This foundational theory posits the necessity
of a sequential process to integrate multiple visual features,
introducing the critical distinction between focal attention
and top-down processing.

The distinction between covert and overt attention, initially
proposed by Posner et al., has been a central theme in
the research [40]. Ward expanded on this line of work
by demonstrating the brain’s capacity to enhance sensory
processing without eye movements [49]. Bisley emphasized
the importance of visual attention for perception and for all
the ways in which we use perception, including learning,
memory, and interaction with the visual environment [6].
Typically, we think of focusing attention on objects or
features in terms ofmaking a quick eyemovement (a saccade)
to bring the object of attention to the center of the gaze.
However, our visual system can also process information
from selected peripheral regions of the retina. When done
consciously, this is often described as ‘‘looking out of the
corner of the eye’’ (see the example in 1).

Belyusar et al. later refined these definitions, characteriz-
ing overt attention as the explicit engagement of the motor
system and covert attention as stealthy silent deployment of
the attentional spotlight [4]. The relationship between eye
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FIGURE 1. Process of a glance through the corner of the eye (own source).

movements and attention has been extensively investigated.
Groner and Groner laid the groundwork by exploring this
interconnection [18], followed by Crawford and Müller, who
investigated saccadic movements [13]. Engelke et al. further
deepened this distinction, showing that both mechanisms
operate with similar efficiency in terms of response times,
particularly in everyday scenarios, such as driving [16].
In the context of specific visual processing, Inhoff et al.

[26] and Henderson et al. [25] examined the role of attention
during reading and the processing of extrafoveal information
in detail. Kulke et al. expanded this understanding by
demonstrating how attention enhances visual responses to
stimuli, while inhibitory mechanisms suppress responses to
distractors. They observed that visual response amplitudes
decreased as the number of distracting stimuli increased,
while attentional responses increased [29].
Advances in computational modeling have been made.

Itti and Koch developed a pioneering pre-attentive visual
attention model [27], whereas Satoh and Miyake proposed a
model based on scale-space theory [43]. Frielink-Loing et al.
found that attention distribution is independent of eye
movements, with covert attention consistently showing an
anisotropy in object tracking their experiments revealed that
covert attention always considers motion information when
tracking objects, whereas overt attention is more flexible, and
its anticipatory nature depends on the task [17].

The integration of visual attention with other cognitive
processes is another crucial aspect. Cowan established links
between short-term memory and attention [12], whereas
Driver and Spence broadened our understanding by examin-
ing spatial attention across different sensory modalities [15].
Blair and Ristic added another dimension by arguing that
covert attention reflects mental readiness, whereas overt
attention incorporates oculomotor resources, they found a
high degree of similarity between automated, voluntary, and
combined covert and overt attention when tasks and stimuli
were matched across both response conditions [7].
More recent research by Parr and Friston proposed a

theoretical framework integrating covert sensory selection
with the active manipulation of sensory structures, suggesting
two fundamental interpretations of attention [37]; the first
involves covert selection among multiple sensory channels,
attributing greater importance to sensory streams that convey
the most reliable information about the states of the world
and the second interpretation requires amore active approach,

involving the overt manipulation of sensory structures to
deliberately select the data perceived, thus demonstrating the
complementarity and flexibility of both types of attention in
our interaction with the environment.

B. ATTENTION MECHANISMS IN COMPUTER VISION
In 2016, Xu et al. presented a visual attention-based approach
for automatic image caption generation [51]. They proposed
a model that uses a deep output layer to calculate the
probability of the output word, considering the Long Short
Terms Memory (LSTM) state, context vector, and previous
work. They explored two attention mechanisms: stochastic
(‘‘hard’’) and deterministic (‘‘soft’’), achieving better results
than previous methods in metrics such as BLEU and
METEOR. In addition, they demonstrated that the model
intuitively aligns with visual attention.

In 2018, Milanova conducted a review of visual attention
mechanisms [34], highlighting their relevance in human
visual perception, where they help locate regions of interest
and process subsets of visual input. They pointed out that
visual attention is key in computer vision, neuroscience, and
deep learning, with applications such as object segmentation
and recognition, image captioning, and visual question
answering (VQA). They classified attention models into
bottom-up models based on scene features and top-down
models guided by the observer’s prior knowledge.

In 2021, Chaudhari et al. provided a detailed review of
attention models in neural networks, proposed a taxonomy
of attention techniques, and explored architectures and
applications [11]. They addressed how attention improves
the interpretability of neural networks and discussed the
co-attention and self-attentionmodels. They analyzed various
levels of abstraction and positions in attention models,
differentiating between soft, hard, and local attentions.

In 2022, Guo et al. provided a comprehensive overview
of attention mechanisms in computer vision, categorizing
them into channel, spatial, temporal, and branch attention.
They highlighted their applications in tasks such as image
classification, object detection and semantic segmenta-
tion [20]. They analyzed the advantages and limitations of
these mechanisms and suggested future research directions,
concluding that attention-based models could eventually
replace convolutional networks as a more powerful and
general architecture for image classification.

In 2022, Hassanin et al. categorized fifty attention
techniques in deep learning [22]. They discussed the
strengths, limitations, and applications of these networks,
including spatial, spectral, pixel-wise contextual, pyramidal,
and regional attention, as well as self-attention and non-local
networks. They explored multimodal attention and proposed
techniques to improve it, such as reinforcement and transfer
learning, addressing challenges and open questions.

In 2022, Guo et al. directly addressed the limitations of
self-attention mechanisms applied to computer vision, such
as the difficulty in preserving the spatial structure of images,
high computational cost, and low efficiency in capturing
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complex visual patterns [19]. To address these issues, they
proposed the Large Kernel Attention (LKA) mechanism,
which combines the efficiency of convolution with the ability
of self-attention to model global dependencies. Building
on this foundation, they developed the Visual Attention
Network (VAN) architecture, which achieved superior results
compared to transformers and traditional convolutional net-
works in tasks such as image classification, object detection,
and semantic segmentation. Through ablation studies and
experiments on the ImageNet-1K benchmark, the authors
demonstrated that the LKA provides an efficient and effective
alternative for visual attention modeling.

C. VISUAL ATTENTION FROM VISUAL TRANSFORMERS
In 2017, Vaswani et al. introduced the ‘‘Transformer’’
architecture, based on multi-head attention, eliminating the
need for convolutional and recurrent networks in text process-
ing [48]. This architecture achieved state-of-the-art results
in machine translation, surpassing previous models in terms
of quality, parallelization, and training efficiency. In 2021,
Dosovitskiy et al. introduced the Vision Transformers (ViT)
model, which processes images as sequences of patches [14].
ViT has demonstrated outstanding performance in image
classification when trained on large datasets, surpassing tra-
ditional convolutional networks. In the same year, Han et al.
provided an overview of the state of the art of Transformers
in computer vision, highlighting their application in tasks
such as object detection, segmentation, image generation,
video processing, and pose estimation [21]]; they also
proposed a Transformers in Transformers (TNT) model,
which introduces patch subdivisions to improve feature
representation through local and global positional encodings.
TNT have higher accuracy on datasets such as ImageNet with
lower computational costs than standard transformers.

In 2021, Tuli et al. analyzed the error consistency between
humans, CNNs, and ViTs, and found that ViTs exhibited
greater agreement with human decisions owing to their bias
toward shape over texture [47]. This positions them asmodels
that are more like human vision than CNNs. Raghu et al.
explored the differences in internal representations between
ViTs and CNNs and demonstrated that ViTs generate more
uniform and global representations [41]. They also observed
that residual connections in ViTs are key to propagating
features between layers.

In 2022, Xu et al. published a detailed analysis of
visual Transformers, addressing their structural design and
application in both high- and low-level vision, content
generation, and multimodal learning [52]. Models such as
DETR,DALL-E, and TransGAN stood out in tasks like image
restoration, generation, and text-image fusion. That same
year, Yang et al. reviewed the use of Transformers in visual
learning, demonstrating their superiority over convolutional
networks in tasks such as segmentation, detection, and
image synthesis [53]. They highlighted variants such as
X-Transformers and Segmented, which leverage global

context in segmentation. James Wensel et al. investigated
Transformers for human activity recognition, proposing
Recurrent Transformers (ReT) and Vision Transformers
(ViT), which improve speed and scalability compared to
traditional CNNs and RNNs, highlighting the need for
lightweight models for resource-limited devices [50].
In another 2022 study, Cadoni et al. investigated the

correlation between human attention and ViT attention [9].
They developed a dataset of human fixations on facial images
and compared them with attention maps generated by ViTs,
showing that these models can mimic human attention by
highlighting discriminative regions of the images. Park and
Kim analyzed the self-attention mechanisms in ViTs, high-
lighting that they improve both accuracy and generalization
by flattening loss landscapes [36]. They also demonstrated
that ViTs act as low-pass filters, in contrast to CNNs, which
operate as high-pass filters, suggesting a complementarity
between the two architectures.

In 2023, Mehrani and Tsotsos concluded that attention
mechanisms in ViTs do not replicate human attention
but instead perform perceptual grouping based on simi-
larities [33]. They also pointed out limitations in tasks
such as detecting unique elements, where ViTs do not
outperform CNNs. Moutik et al. conducted a comparative
analysis between CNNs and ViTs in action recognition tasks,
highlighting that ViTs perform better on large datasets thanks
to their ability tomodel long-range relationships, while CNNs
are preferable in scenarios with limited data [35].

III. METHODOLOGY
The proposed method consists of three stages: data under-
standing, heatmap generation, and model evaluation and
validation (see Figure 2). The first stage involves collecting,
understanding, and preparing the data obtained from the
experiments. The second stage consists of creating heatmaps
based on the participants’ visual attention patterns and,
in parallel, applying the Visual Transformers architecture
to the data to generate heatmaps, allowing for analysis of
the attention mechanism. The third stage involves evaluating
and comparing the results using various metrics. Finally,
we present a discussion of the results obtained.

A. DATA UNDERSTANDING AND PREPARATION
The collection of data on participants’ fixations was carried
out using the following equipment: a 52-inch TV with a
projection speed of 60 MHz, a pupil-Labs Core model
eye-tracker lens connected to a desktop computer with a
64x AMD Ryzen 5 5600X 6-Core 3.70 GHz processor,
48 GB of installed RAM, and an NVIDIA GeForce RTX
3060 graphics card (GPU), running Windows 11 Pro. The
following software was installed: pupil capture version 3.5-1
for Windows 11 and its add-ons pupil player and pupil
service. This set of applications was used for calibrating the
eye tracker, collecting fixation data from each participant,
and analyzing the data to separate each image and the
corresponding participant fixations. OBS Studio version
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FIGURE 2. Methodological diagram illustrating the flow of an experiment
whose objective is to compare human visual attention with the attention
generated by a computational model of the Visual Transformer type [14].
The process begins with a set of images of basketry and jars that are used
as visual stimuli. These images are presented to different human
participants, whose attention is recorded through the use of an
eye-tracker, generating a database that is then used to construct heat
maps representative of human visual attention. In parallel, the same
images are processed by a Visual Transformer model, which generates a
second database and produces heat maps reflecting the model’s
attention. Both heat maps, that of the participants and that of the model,
are then compared using several specific metrics that allow to analyze
the degree of similarity between them. Finally, this comparison allows
obtaining results and conclusions about human visual attention behavior
versus the computational model.

FIGURE 3. Distribution of participants in the experiment according to
gender and age group.

29.1 was installed for marker visualization on the screen, and
Python version 3.12.5 was used to create scripts to manage
transitions and image presentations during the experiment.
The latter also enabled the construction of heatmaps and the
Visual Transformers model [14].

The experiment with participants followed this protocol:
First, it was verified that participants were individuals
(regardless of gender) over 18 years old, regardless of
profession or education level, and without any vision
problems (especially near vision, less than 1.3 meters). Of the
total participants in the experiment, 93.3% belonged to the
age group of 18 to 25 years, while only 6.7% were over
25 years old. In the 18 to 25 age group, females predominated
at 60.7%, followed by 37.5%male participants and 1.8%who
preferred not to answer. In the group over 25 years old, 75.0%
identified as male and 25.0% as female, with no individuals
opting not to disclose their gender. Overall, 58.3% of the
participants were women, 40.0% were men, and 1.7% chose
not to indicate their gender (see Figure 3).

Next, a brief explanation of the experiment was provided
to the participants, followed by the reading of the informed
consent letter and the confidentiality agreement. After
agreeing to the terms outlined in these documents, both the
investigator and the participant signed letters, and a copy
of each was provided to the participant.1 The participant
was then instructed to sit in a chair positioned in front
of the television (TV), adjusting the distance between the
participant and the TV to 1.3 meters. The eye tracker was
immediately placed on the participant, with the lens adjusted
to ensure comfort. Next, the calibration process for the eye

1This protocol has been approved by the Ethics Committee of Universidad
Adolfo Ibáñez (certificate 57/2023).

FIGURE 4. Experimental procedure for object visualization. Before
starting the experimental phase, a calibration procedure is performed by
recording a sequence of points on the screen for each user. Once this
process is completed, the experimental phase begins through the
projection of an image with a white background and red dot which is
displayed for 5 seconds. Then one of the 20 objects is displayed for
10 seconds. This procedure repeats until all objects have been displayed.

tracker began, requiring each participant to observe points
(targets) on the screen appearing sequentially from 1 to 5 (see
Figure 4).

Once the calibration was completed, the experiment began
by displaying the images on the screen, interspersed with
a white screen featuring a red dot at the center between
images to prompt the participant to fix their gaze on that point
before each image (see Figure 4). The images presented to
the participants on the screen were displayed for 10 seconds
each before the white screen with the red center dot appeared.
The entire experiment lasted approximately 20 minutes per
participant.

After setting up the equipment and presenting the protocol
to the participant, the experiment was conducted to collect
fixation data. Each participant observed images on the screen
related to various handcrafted products (basketry and jars),
with the primary objective of building heatmaps associated
with the participants’ eye movements and fixations on each
aspect of the image. This approach provided valuable insights
into inherent visual patterns without the influence of a
specific task.

To reduce the central fixation bias introduced by the
presence of the red dot at the center of the screen before
each image, a temporal cropping strategy was applied to the
fixation data. Specifically, 10 frames were excluded from
the beginning and 10 frames from the end of each viewing
sequence for every image and participant. This procedure
aimed to eliminate the initial fixation driven by the red cue
as well as any potential central bias that might occur toward
the end of the viewing period, ensuring that the fixation data
used for the heatmap generation more accurately reflected
spontaneous and unconstrained visual attention.

Based on the collected visual fixation data, a data cleaning
and structuring process was carried out to ensure the
coherence, clarity, and consistency of the information. This
involved applying cleaning, transformation, and normaliza-
tion procedures to adequately prepare the data for analysis in
the subsequent stages of the study.
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FIGURE 5. Diagram explaining the process of generating heat maps for
participants.

B. HEAT MAP GENERATION
The heatmap generation phase plays a crucial role by
providing a visual and quantitative representation of the
participants’ attention patterns, as well as the intrinsic
attention mechanism of the Transformers (ViT) model during
image observation. The implementation of this process was
carried out separately and distinctly for both.

1) PARTICIPANT HEATMAPS
This process aimed to record and capture eye movements and
fixations by measuring the gaze position and the areas where
participants focused their attention during image viewing
(fixations) using an eye tracker. The data obtained from
tracking eye movements and fixations were filtered and
normalized to generate heatmaps that visually represent the
areas of greatest fixation and/or attention. This allowed for
a deeper understanding of the visual patterns associated with
observing handcrafted products (see Figure 5).

The eye-tracking and heatmap generation process inte-
grated seamlessly with the participant’s visual experience,
ensuring the collection of accurate and relevant data for
subsequent analysis. This robust methodological strategy
ensured the quality and reliability of the results, providing
a detailed view of the connection between visual perception
and attention patterns in the context of images featuring
handcrafted products such as jars and basketry.

2) TRANSFORMER HEAT MAP
To extract the model-based visual attention, we used a
Vision Transformer (ViT-Base) architecture pretrained with
the self-supervised DINO framework (Self-Distillation with
No Labels) developed by Facebook Research [10]. Themodel
was implemented following the architecture described by
Dosovitskiy et al. [14], using a patch size of 16 and an image
input size of 224 × 224.

Each experimental image was divided into patches and
passed through a patch embedding layer. A learnable [CLS]
token was prepended to the sequence of patch embeddings
to enable a global representation of the image. Positional
embeddings were added to the tokens to encode spatial

FIGURE 6. Overview of DINO self-supervised training process [10].

information, and the resulting sequence was processed by a
stack of Transformer blocks.

For attention extraction, we followed the interpretability
procedure proposed in the original DINO implementation.
Self-attention weights were extracted from the final Trans-
former block, specifically focusing on the attention from the
[CLS] token to all image patches. Specifically, we extracted
the attention values from the [CLS] token to all other patch
tokens, which yields a spatial attention map indicating which
regions of the image contributed most to the model’s global
representation.

The attention weights from each head were collected and
reshaped to form a 2D grid. We computed the mean attention
across all heads to obtain aggregate attention maps. These
were then upsampled via nearest-neighbor interpolation to
match the original image resolution. The resulting attention
heatmaps were saved as images and CSV files for further
comparison with human eye-tracking data.

This procedure ensures that the attention maps are spatially
aligned with the original stimuli and interpretable in terms of
localized visual importance, allowing us to compute diver-
gence metrics between model-based and human attention.

C. EVALUATION
In this stage, a comparison was made between the distribu-
tions obtained from the heatmaps generated in the previous
stage for each group (participants and the ViT model). Five
metrics were used for the comparison, as detailed below.

1) KULLBACK-LEIBLER DIVERGENCE (KLD)( [30], [31])
Comparing two heatmaps involves comparing two his-
tograms or distributions. A widely used tool for measuring
the difference between distributions is the Kullback-Leibler
Divergence (KLD). This measure originates from informa-
tion theory and is commonly used to compare distributions.
Given two heatmaps with distributions P and Q (in some
space X), the KL divergence from Q to P is denoted as
DKL(P||Q) and is defined as follows:

DKL(P∥Q) = Ex∼P

[
log

P(X )
Q(X )

]
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First, both heatmaps must be normalized so that they
represent valid probability distributions. The KLD formula
is then applied to each pair of corresponding values in the
two maps, and all the calculated values are summed to obtain
the total KLD; a low value (close to 0) indicates greater
similarity between the maps, while a high value indicates
greater discrepancies between the maps (taking Q as the
reference).

2) JENSEN-SHANNON DIVERGENCE (JSD) [32]
The Jensen-Shannon Divergence (JSD) is a statistical mea-
sure that quantifies the similarity between two probability
distributions. It is based on the concept of Kullback-Leibler
Divergence; however, JSD has certain advantages over
KLD, particularly its symmetric nature and bounded range.
The Jensen-Shannon Divergence between two probability
distributions P and Q is mathematically defined as follows:

JSD(P||Q) =
1
2
DKL(P||M ) +

1
2
DKL(Q||M )

whereM =
1
2 (P+Q) is the average of the two distributions,

and KLD represents the Kullback-Leibler divergence. This
formulation highlights the symmetric nature of JSD, as it
treats both distributions equally, unlike Kullback-Leibler
divergence, which is inherently asymmetric. JSD values are
bounded between 0 and 1, where 0 indicates maximum
similarity and 1 indicates complete dissimilarity.

3) HELLINGER DISTANCE (HD) [23]
The Hellinger Distance is a metric that measures the
similarity between two probability distributions. It is based
on the square root of the distributions, making it less sensitive
to slight differences compared to other metrics such as KLD.
Mathematically, it is defined as:

H (P,Q) =
1

√
2

√∑
x

(√
P(x) −

√
Q(x)

)2
This distance takes values between 0 (when P and Q are

identical) and 1 (when they are completely disjoint). It is
useful in contexts where it is important to penalize slight
differences between distributions less heavily.

4) SOBOLEV DISTANCE (SD) [1]
The Sobolev distance compares two distributions by con-
sidering both pointwise differences and their derivatives (or
gradients), making it sensitive to the spatial variation of the
distributions. It is particularly suitable for heatmaps or spatial
distributions where not only value matches matter, but also
the ‘‘smoothness’’ or ‘‘texture’’ of the differences. A common
formulation for the Sobolev distance between P and Q is:

DSob(P,Q) =

√∫
X

|P(x) − Q(x)|2dx + λ

∫
X

|∇P(x) − ∇Q(x)|2dx

where λ is a weight parameter that controls the influence of
differences in the gradients. Values close to zero indicate high
similarity in both the intensities and the gradient structures.

5) KOLMOGOROV-SMIRNOV DISTANCE (KSD) [28], [44]
The Kolmogorov-Smirnov distance measures the largest
absolute discrepancy between the cumulative distribution
functions (CDF) of two distributions. For two distributions
P and Q with CDFs FP(x) and FQ(x), the metric is defined
as:

DKS (P,Q) = sup
x

|FP(x) − FQ(x)|

This metric is widely used to compare one-dimensional
distributions and is especially useful when identifying signif-
icant local differences in the tails or the shapes of the distri-
butions. It also forms the basis for the Kolmogorov-Smirnov
statistical test used in nonparametric analyses.

IV. RESULTS
This section presents the results obtained from the compari-
son between the human attention heatmaps, generated from
data collected using eye-tracking from sixty participants, and
the attention maps generated by the Visual Transformers
(ViT) model described by Dosovitskiy et al. The experiment
was conducted using a set of images corresponding to hand-
crafted objects, specifically handbags and jars. For the quan-
titative comparison, multiple distance and divergence metrics
were used, including Kullback-Leibler Divergence (KLD),
Jensen-Shannon Divergence (JSD), Hellinger Distance (HD),
Sobolev Distance (SD), and Kolmogorov-Smirnov Distance
(KSD). These metrics allowed for the analysis of both global
and local similarities and differences between the attention
distributions of both approaches (human and artificial).
Additionally, the results were visualized using pixel-by-pixel
difference maps, which allowed for the identification of
areas of greatest discrepancy (or divergence) between the
participants’ attention patterns and the attention estimated by
the ViT. The results are discussed in detail below.

A. RESULTING PARTICIPANT HEAT MAPS
The results of the human experiment revealed that, on aver-
age, there was a predominant concentration of fixations
in the central area of the handbags, with saccadic move-
ments primarily occurring from top to bottom (or vice
versa), where distinctive elements such as zippers, clasps,
or different textures are generally located. This suggests
manifest attention focused on visual features relevant to the
object’s functionality or aesthetics. In some cases, such as in
cesteria_03 and cesteria_04, additional fixations and saccadic
movements were observed distributed toward the lateral or
upper areas, which could be related to additional details such
as finishes or decorative patterns (see Figure 7). In general
terms, the attention patterns tended to be vertically centered
along the mid-axis of the handbags, which is consistent with
the natural visual scanning strategy used for symmetrical
objects [5], [24], [54].
For the jars, on average, the heatmaps revealed a vertical

attention pattern that followed the elongated shape of the
object, with high-density points in the middle region of the
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FIGURE 7. Example of participants’ average attention heatmaps for
basketry (first four images).

FIGURE 8. Example of participants’ average attention heatmaps for the
jars (first four images).

jars’ bodies—an area where the jars have a more rounded
and wider structure. Dispersed attention was also noted
in the upper parts of some jars, which could be due to
visual exploration of the lids or rims, indicating attention to
structural or aesthetic features of interest to the participants
(see Figure 8).

In general terms, when analyzing the heat maps, a recurring
pattern was observed in which participants tended to focus
their attention primarily on the central areas of the images.
This phenomenon was consistent in both the basketry and
jar photographs (see Figure 9), showing a visual inclination
toward the vertical line running through the center of the
objects.

While some fixations were detected in the peripheral areas,
they were much more dispersed and had lower density.
This reinforces the idea that observers’ gaze preferentially
focused on the main object, with less interest in exploring the
surroundings or edges of the images.

These results align with well-documented patterns of
human visual attention, where observers tend to focus their
gaze on regions containing the greatest amount of perceptual
information or perceived as structurally relevant within the
stimulus. This tendency has been associated with concepts
such as the perceptual center of mass, a notion describing
the visual system’s natural inclination to target area of
balance or visual prominence within a scene [5], [24], [45].
Consequently, it is not surprising that, in this analysis, both
the areas richest in information and the structurally prominent
regions attracted a higher proportion of fixations.

FIGURE 9. Heatmaps of average human fixations for basketry and jars
images.

FIGURE 10. Example of ViT average attention heat maps for basketry
(first four images).

B. HEAT MAPS RESULTING FROM APPLYING THE VIT
MODEL
For the basketry images processed by the ViT model,
attention was distributed in the central and upper areas of the
handbags. For example, in the cesteria_01 image, on average,
the model directed attention toward the central clasp and its
vertical structure, as well as toward its handle. In cesteria_02,
the model focused attention particularly on the decorative
upper stripe of the basket and its handles. In images such as
cesteria_03 and cesteria_04, attention was similarly focused
on the handles and upper edges, highlighting the ViT’s
sensitivity to the structural boundaries of the baskets (see
Figure 10).

In general, the model tends to identify distinctive elements
such as handles, closures, and textile details in the upper
and middle parts of the baskets, activating specific areas
containing relevant geometric details or textures.

In the case of the jars, the model’s attention maps revealed
a marked preference for the upper areas of the objects.
For example, in jarra_01 and jarra_02, the model concen-
trated attention on areas around the lids and upper edges,
highlighting interest in the shapes and reliefs concentrated
in those regions. In images such as jarra_03 and jarra_04,
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FIGURE 11. Example of ViT average attention heatmaps for the jars (first
four images).

FIGURE 12. ViT-generated average attention heatmaps for the basketry
and jar images.

ViT focused its attention on areas with complex decorative
patterns located in the middle part of the jar (see Figure 11).

In general terms, the ViT prioritized decorative areas,
reliefs, and edges, distributing its attention both to the upper
regions and to specific patterns located on the body of the jar.

Overall, the heatmaps generated by the ViT showed a
marked tendency to focus their attention on the structural
areas and edges of the objects present in the images.
In handbags, for example, the model commonly highlighted
the handles, upper edges, and those areas where functional
details such as clasps are typically located, particularly in
zones where reliefs or geometric patterns are concentrated
(see Figure 12).

When analyzing the images of the jars, the behavior was
different: the ViT’s attention was distributed more broadly
along the contour and surface of the object. The model placed
particular emphasis on the decorated areas and the reliefs
adorning the jar’s structure, highlighting complex visual
patterns and differences in texture or color that enrich the
object’s surface (see Figure 12).

Overall, it can be observed that ViT consistently prioritized
the edges and those areas with greater spatial complexity,
such as contours, handles, or ornamental details. Although in
some cases attention was also observed on the central body

of the objects, the greatest concentration of attention fell on
the areas that defined or structured the figure.

This suggests that ViT organizes its attention primarily on
those visual elements that are most informative for defining
and segmenting the objects, responding to their design, which
is oriented towards identifying spatial patterns and relevant
structural relationships within the scene.

C. HUMAN ATTENTION VS. VIT ATTENTION
An initial visual analysis between the attention heatmaps
generated by the participants and those produced by the ViT
model revealed notable differences in the visual exploration
mechanisms employed by each. In the case of human
participants, a concentration of fixations (overt attention) was
observed in the central areas of the objects. This behavior was
not only consistent across all basketry and jug images, but
also followed typical patterns, such as seeking symmetry and
prioritizing regions with high density. Saccadic movements,
which correspond to rapid shifts of gaze between fixation
points, tended to be limited in extent, remainingmostlywithin
the fixation density. This suggests that participants prioritized
certain structural or decorative features in both the bags and
the jugs and did not focus their exploration on the background
or edges of the images, which were not the subject of fixation
by the participants.

In contrast, heat maps generated by the Visual Transform-
ers (ViT) model reflect a distribution of attention based on
weights learned about different regions of the image, without
simulating fixations or saccadic movements as humans do.
Instead of focusing on specific points, the model distributes
its attention along edges, contours, and areas with high
spatial frequency, such as textures and reliefs, thus covering
the entire figure of the object. This strategy responds to
an internal mechanism that assigns greater relevance to
significant spatial patterns to optimize visual processing.

Therefore, in the case of human participants, attention
was expressed through fixations and saccadic movements,
mainly focused on the central and structurally relevant areas
of objects. The ViT model simulates attention maps through
a learned distribution of weights over regions of the image,
based on the relevance of internal features. These attention
distributions highlight contours, textures, and edges, aligning
with the patterns that contribute most to the model’s overall
representation.

Based on the methodology described in this study, after
representing the attention heatmaps (on average) for both the
participants and the ViT model, the previously mentioned
metrics were calculated between the results, using the
participants’ average attention distribution as reference. This
revealed systematic differences between the two distributions
for both the basketry and jar sets (see Table 1).

For the basketry images, the Kullback-Leibler Diver-
gence (KLD) values tended to be higher (mean ≈ 1.98),
with maximum values reaching up to 2.65 in cesteria_06,
suggesting greater discrepancies between the human and
ViT attention distributions. Consistently, the Jensen-Shannon
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FIGURE 13. Example of comparison between human average heatmaps
and ViT average heatmaps.

TABLE 1. Results of comparison metrics between human average
heatmaps and ViT average heatmaps.

Divergence (JSD) and Hellinger Distance metrics also
showed notably high values for this set, with averages
of 0.42 and 0.72 respectively, indicating that the artificial
model prioritized peripheral or high spatial frequency visual
elements, while human participants focused their attention
on functional or central regions, such as the clasps on the
handbags (see Figure 14).

For the jar images, the values of these same metrics tended
to be slightly lower (mean KLD ≈ 1.82; JSD ≈ 0.40;
Hellinger ≈ 0.70), with notable images such as jarra_10,
which showed a KLD of only 1.38 and a Hellinger of 0.63,
suggesting greater similarity between human and artificial
attention in this set. This pattern could be explained by a
coincidence in the orientation of attention toward ornamental
patterns and the pronounced shape of the main area of the jar,
which were present in both forms of analysis (manifest and
covert).

For the Kolmogorov-Smirnov (KS) and Sobolev metrics,
the KS metric, which measures the maximum cumulative

FIGURE 14. Boxplots of divergence metrics comparing attention maps
from human participants and ViT, separated by object category (basketry
and jars). Each panel shows the distribution of a specific metric across
the 10 images in each category.

discrepancy between two distributions, showed considerable
variation in the basketry images, with values ranging from
0.81 (cesteria_04) to 0.92 (cesteria_07). In the jar images,
a slightly wider range was observed, from 0.71 (jarra_07)
to 0.90 (jarra_03). This dispersion indicates that significant
local differences exist between the human and ViT attention
maps, particularly in some jars whose morphology or
decoration results in more similar distributions between the
two approaches.

Meanwhile, the Sobolev metric, which evaluates differ-
ences in spatial gradients (that is, changes in attention
across space), also revealed that for the basketry images, the
values tended to concentrate between 0.041 (cesteria_06) and
0.083 (cesteria_02), suggesting that the ViT model exhibited
moderate differences compared to humans in terms of how it
shifted attention across regions of interest. In contrast, the jar
images showed a wider range, from 0.030 (jarra_08) to 0.081
(jarra_10), indicating that in some cases (such as jarra_08),
the ViT exhibited spatial attention very similar to that of
humans in terms of visual focus transition, while in other
cases (such as jarra_10), greater discrepancies were observed
in how attention shifted between regions.

Overall, these results show that local metrics, such as
KS and Sobolev, capture more subtle differences between
distributions compared to KLD, JSD, and Hellinger metrics.
In the basketry dataset, local differences tended to remain
stable, while in the jug dataset, more pronounced variations
were observed. This may be due to the diversity of decorative
patterns and the more defined geometric structure of the
jugs, which could influence how the ViT model internally
distributes its attention (i.e., how it assigns its attention
weights).

In general, the metrics supported the visual results
described above. The basketry images showed greater
discrepancies between the ViT attention maps and human
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FIGURE 15. Pixel-by-pixel differences between the distributions representing human
attention heatmaps and the distribution representing ViT attention heatmaps for basketry
according to different metrics.

patterns, which can be attributed to the structural complexity
of these objects. While the ViT tended to highlight edges and

lines through a learned distribution of weights over the image,
human participants focused their attention on functional or
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FIGURE 16. Pixel-by-pixel differences between the distributions representing human
attention heatmaps and the distribution representing ViT attention heatmaps for jar according
to different metrics.

perceptually relevant areas. In the case of the jugs, there
was greater agreement between the two types of attention,

possibly because both the ViT and humans focused on the
ornamental patterns on the body and upper edges. However,
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in the central region of the jars’ bodies—which is more
rounded andwider—there were still notable differences in the
distribution of attention (see Figures 15 and 16).

V. CONCLUSION
The comparative analysis between the heatmaps representing
human visual attention and those generated by the Visual
Transformers (ViT) model demonstrated that, although
computational models have advanced, they still present sig-
nificant limitations in replicating the perceptual behavior of
human fixations. Despite recent advances in visual attention
models such as Visual Transformers, multiple studies have
noted that these models tend to capture general attention
patterns but fail to match human visual perception when
confronted with complex scenes [10], [24], [45]. Human
visual attention does not depend solely on the physical
characteristics of the stimulus but is profoundly influenced by
cognitive factors such as context, intention, and the observer’s
prior experience, adding a layer of complexity that is difficult
to emulate computationally [24], [45], [54].
The images used in the experiment, focused on handcrafted

objects such as handbags and jars, allowed us to observe
how participants tended to fix their attention on specific
areas, particularly the central parts of the objects, following
vertical saccadic movements (from top to bottom or vice
versa), where decorative, structural, or functional elements
are usually located. In the case of the handbags, fixations
were concentrated on details such as clasps, handles, and
textures, whereas for the jars, attention focused on formal
elements such as the lids and the curves of the object’s body.
The ViTmodel, for its part, managed to capture some of these
areas of interest, showing a tendency to distribute attention
more uniformly across the entire image, including regions
that did not necessarily coincide with human fixations. This
suggests that artificial attention still lacks the contextual
sensitivity that characterizes human perception and actively
guides gaze direction.

The metrics used to assess the similarity between the
heatmaps (Kullback-Leibler Divergence (KLD), Jensen-
Shannon (JSD), Hellinger Distance (HD), among others)
revealed differences between the two approaches. Greater
alignment was observed in the central regions of the images,
where fixations are usually more prominent, but greater
divergence appeared in the peripheral areas of the images,
especially those with lower visual load. These observations
were reinforced by the pixel-by-pixel difference maps, which
visually identified the areas where the ViT differed the
most from human attention. This type of analysis provides
empirical evidence that the ViT model still fails to fully
replicate human perceptual fixations, which could limit its
applicability in contexts requiring a high degree of manifest
visual interpretation.

In summary, while the ViT model represents a significant
advancement in simulating visual attention, the results of
this research show that there is still considerable progress to
be made in approaching the behavior of human perception.

Understanding the differences between the two approaches
not only helped identify weaknesses in current models
but also encouraged reflection on the aspects of human
perception that artificial intelligence has yet to adequately
model. This critical understanding is essential if such
technologies are to be applied in sensitive fields such
as education, advertising, digital art, or human-machine
interaction, where well-directed visual attention can make a
significant difference in the effectiveness and comprehension
of the presented content.

VI. DISCUSSIONS
In the future, it is expected that this topic will continue to
be studied, taking into account the difference between the
distributions of the attention fixations of the participants
and those of the ViT model to train the model in order
to minimize this difference, considering that equivalent
behaviors were obtained for the metrics. The heads of the
attention mechanism were also analyzed to verify which of
them behaved as close as possible to the participants’ results.

Additionally, although this study focused on the direct
comparison between human attention and the attention gen-
erated by a Vision Transformer trained with a self-supervised
approach (DINO), we recognize the value of contrasting
these results with more classical models of visual saliency
or attention, such as Grad-CAM or Itti-Koch. These models
could provide additional context to better understand how
ViT-based attention differs in nature and focus. We have not
included such comparisons in the present work to maintain a
clear scope, but we plan to incorporate them in future research
as part of a broader evaluation framework.

On the other hand, it would be pertinent to extend the
analysis to other transformer-based architectures beyond the
original ViT, such as Swin Transformer, DeiT, or TNT.
These models share basic attention mechanisms but include
architectural innovations that may influence their attention
behavior. Studying whether the similarities and discrepancies
observed with human attention hold across all these variants
remains an important direction for future work.

Furthermore, we propose generalizing these studies, using
the same (or similar) data and the same principles, but
comparing large multimodal language models (LLMs) (such
as ChatGPT, Grok, Gemini, or Claude) that have just made
public their visual ability to distinguish which ones exhibit
behaviors close to human fixations.

Finally, it is important to note that while our study is
based exclusively on external visual data and does not
include neurological measurements, recent literature suggests
potential analogies between the operation of ViT models
and certain neural processes. In particular, Ramezanpour
and Fallah propose that ViTs may function similarly to
perceptual systems mediated by the mid-level temporal
cortex, especially in their ability to capture global visual
features [42]. This interpretation is consistent with the spatial
distribution observed in the attention maps generated by the
ViT model in our study. Buschman and Miller. emphasize

172242 VOLUME 13, 2025



L. G. O. Piñero et al.: Comparative Perspective of Visual Attention: From Human Focus to Visual Transformers.

the role of the prefrontal cortex in top-down attentional
control [8], our data do not allow us to draw conclusions about
such higher-order mechanisms. Nonetheless, the parallel
with mid-level perceptual processing offers a compelling
framework for understanding the behavior of ViTs in relation
to human attention and opens future lines of inquiry into the
biological plausibility of transformer-based vision models.

VII. ADDITIONAL EXPERIMENT RESULTS
The appendices present the final results of applying the
metrics described in Section IV to compare the heatmaps
of human fixations with those obtained from the Visual
Transformer model. Figures 15 and 16 illustrate the results
for the experiment discussed in Section IV.

A. DATA AVAILABILITY STATEMENT
https://github.com/luis-oliveros/Visual_Attention_and_ViT
(accessed on 05 August 2025)
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