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Abstract: Images are capable of conveying emotions, but emotional experience is highly subjective.
Advances in artificial intelligence have enabled the generation of images based on emotional de-
scriptions. However, the level of agreement between the generative images and human emotional
responses has not yet been evaluated. In order to address this, 20 artistic landscapes were generated
using StyleGAN2-ADA. Four variants evoking positive emotions (contentment and amusement)
and negative emotions (fear and sadness) were created for each image, resulting in 80 pictures. An
online questionnaire was designed using this material, in which 61 observers classified the generated
images. Statistical analyses were performed on the collected data to determine the level of agreement
among participants between the observers’ responses and the generated emotions by AI. A generally
good level of agreement was found, with better results for negative emotions. However, the study
confirms the subjectivity inherent in emotional evaluation.

Keywords: agreement; emotion; generative neural networks

1. Introduction

An image serves as a means of communication, conveying a message capable of evok-
ing emotions based on the intention behind its creation [1]. In order to ensure the observer’s
accurate interpretation of the message, it is essential to implement a well-designed visual
strategy. This strategy serves as a channel to elicit both conscious and unconscious emo-
tional reactions, which manifest physiologically [2] and psychologically [3–5]. However,
one of the main challenges in studying emotions is the subjective nature of emotional
responses to experiences, which can vary significantly between individuals [6]. Therefore,
reaching a significant agreement between individuals is complex [7], and even more so
between generative artificial intelligence and humans.

In addition to subjectivity, other factors affect the correct experience that produces the
emotional response, such as the observer’s socio-cultural context [8], their experience [9–12],
the temporal evolution of the emotion or the location of the image [13], which can produce
unexpected reactions [14] contrary to the initial purpose in visual creation.

These factors pose a challenge for emotion categorization. For this reason, psychology
has developed categorical emotion states (CESs) or discrete models, which identify basic
emotions, as proposed by Ekman or Mikels. In contrast, the multi-dimensional model
(DES) by Wood et al. [15] categorizes emotions based on valence, which defines pleasure as
arousal, ranging from excitement to calm, and dominance as the degree of control. In this
model, emotions are often binarized as positive or negative, although sometimes a neutral
category is included [6,16].

The complexity of the relationship between visual objects and emotions, along with the
ongoing quest to understand emotional processes, plays a crucial role in human cognition,
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communication, and behaviour [4]. Due to the neurophysiological responses triggered by
everyday situations or mental processes such as memories, imagination, or beliefs [2], this
has become a broad field of neuroscience research focused on the analysis and recognition
of emotions [17], as well as in psychology [4,18], education [19], and health [20]. A wide
range of methodologies has been employed [21], including speech analysis [22], facial
expressions [23], body movement [24], thermal measurements [25], text analysis [26],
as well as movies [27], music [28], and multimodal approaches [29].

In addition to these areas, the field of computer science, especially computer vision,
has taken an interest in art as an object of study for the analysis of emotions in visual
emotion analysis [30], emotion recognition [31,32], or affective image content analysis [6,8],
where the denotative elements of the image, known as low-level, local, or handcrafted
features [33–37], such as textures [38–41], shapes [42] or colour [33,43–45], are identified and
analyzed. Semantics are typically referred to as high-level or global features [6,8,11,46–49].
In this context, research has focused on the analysis and classification of aesthetic as-
pects [9,50], places [8], and emphasis and harmony [37], which involves an analysis of
several characteristics of the image. In some cases, the relationships between attributes or
compositions have been studied, known as mid-level or semi-local features [47,51–53].

Thus, studies can be found by analyzing abstract art [54–56], oriental art [57–61],
cubist art [62], figurative art [63], artwork from various cultures [64], photography [9,65,66],
public art [67], painting in general [33,44,68], drawing [69], comics [70], and portraits of
different artistic styles [66] and techniques [39], as well as investigating whether there are
differences between disciplines [66] or using the title of the work or the author [56,68].

Nowadays, in addition to the field of automatic emotion recognition, there is a grow-
ing development of generative artificial intelligence (AI) capable of creating images based
on emotional input (e.g., prompts) [71]. This development has highlighted the need for
additional processing to validate the generated content [72]. Validation can be conducted
by considering various aspects of the images, including visual elements such as formats,
colour, textures, and connotative elements such as meaning or intrinsic emotions. Our
research focuses on the emotional validation of images generated by AI. Thus, the re-
search hypothesis investigates whether images created through generative processes with
a specified emotion align with human emotional responses to a significant degree.

Given this need, and to the best of our knowledge, no previous studies have conducted
statistical analyses on the level of agreement between emotions generated by generative ar-
tificial intelligence and human judgment. This research proposes a methodology to address
this issue. It was developed in three phases: In the data preparation phase, the Artemis
dataset was used to train the generative model StyleGAN2-ADA. In the modelling phase,
20 landscape images were generated, with four variants for each image—two expressing
positive emotions and two expressing negative emotions—resulting in a total of 80 images.
Finally, in the evaluation phase, an online questionnaire was designed using this set of im-
ages, where 61 individuals classified the images according to their emotions. Subsequently,
various statistical analyses were conducted to establish the degree of agreement among
individuals, including Krippendorff’s alpha, the mode of the individuals and the AI using
precision, recall, F1-Score, and Fisher’s test, and proportion analysis using Jaccard’s index
and Fisher’s test.

In summary, this research proposes the following results and their validation. The fol-
lowing description does not constitute a methodology but rather outlines the results, as the
methodology will be reviewed in subsequent sections:

• Construction of a dataset composed of 80 generated images, artificially categorized
into four emotional groups, accomplished using the StyleGAN-ADA2 (https://github.
com/NVlabs/stylegan2-ada, accessed on 8 October 2024)

• Evaluation among participants for each image to establish a baseline for comparison;
• Comparison between the mode of participants’ responses and the emotions generated

by AI;
• Evaluation of each individual’s response to the emotions generated by AI;

https://github.com/NVlabs/stylegan2-ada
https://github.com/NVlabs/stylegan2-ada


Electronics 2024, 13, 4014 3 of 28

• Analysis of the proportions that align with AI-generated emotions;
• Evaluation of the hypothesis, contributing to the field of generative AI; to our knowl-

edge, no prior studies have measured the consistency and level of agreement between
AI-generated content and human perception.

2. Background

Image generation using computational techniques has experienced significant ad-
vancements in recent years. Traditional methods, such as rule-based image processing and
image synthesis techniques, have evolved into more sophisticated approaches that rely on
machine learning and convolutional neural networks. This transformation is largely at-
tributed to the rapid progress in AI, driven by the continuous generation of large-scale data.
Consequently, this advancement has led to the development of considerably more accurate
and reliable AI models capable of generating images that are practically indistinguishable
from authentic photographs or paintings.

In order to examine and understand the computational techniques used in image
generation, this section focuses on the current state of these techniques, with particular
emphasis on generating artistic images. The analysis will be conducted through a compre-
hensive review of scientific and technical literature, ranging from traditional methods to
the most innovative approaches based on machine learning and neural networks.

2.1. Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs)

Recurrent neural networks (RNs) are one of the types of networks that have stood
out in image generation. This type of network has proven useful for completing images
from a section of an image. The model presented by Google DeepMind (https://github.
com/google-deepmind/deepmind-research, accessed on 8 October 2024) in 2016 called
PixelRNN [73] manages to understand the generality of pixel interdependence, being able
to predict missing pixels in an image by receiving only a part of it. This type of network has
also been used to generate images from natural language text descriptions [74]. This study
proposes an attention-based approach, where the model iteratively draws while focusing
on the keywords of the given description. The results obtained achieve the generation of
higher resolution images than those obtained using other approaches and generate images
with a novel scene composition.

A type of neural network perhaps more widely used than recurrent networks is
convolutional neural networks or CNNs. By using this architecture, it has been possible to
generate three-dimensional images of objects from different perspectives, as in the case of
the model presented by Dosovitskiy et al. [75]; by training convolutional networks, they
managed to generate images of chairs from different perspectives. Another example of
the use of convolutional networks is seen in a study conducted by Google DeepMind [76],
where conditional image generation is explored using convolutional networks through
PixelCNN. This model is capable of generating a variety of portraits of the same person
using different facial expressions, poses, and lighting conditions. Its results are on par with
PixelRNN, but it achieves this at a much lower computational cost.

The use of RNNs and CNNs is not mutually exclusive. For instance, a study on a
recurrent convolutional encoder-decoder architecture [77] demonstrates this integration.
In this approach, convolutional networks handle both encoding and decoding, while a
recurrent network manages object rotation. This combined strategy effectively synthesizes
unseen versions of three-dimensional objects, enabling the generation of images of faces or
chairs from various angles.

2.2. Variational Auto-Encoders (VAEs)

The architecture known as variational auto-encoders has great utility as a generative
model. Numerous studies have demonstrated the use of this architecture for image genera-
tion; an example of this is the so-called deep recurrent attentive writer or DRAW [78]. This
model uses a neural network that combines a spatial attention mechanism, mimicking the

https://github.com/google-deepmind/deepmind-research
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way human eyes move to focus on objects, with a self-encoding framework that allows for
the construction of complex images. DRAW has managed to obtain realistic results in the
generation of various types of images, such as photographs of house numbers, in addition
to the classic handwritten numbers.

Another example of the use of variational autoencoders is PixelVAE [79]. This model
has an autoregressive decoder based on PixelCNN [76], but unlike this, it requires a smaller
number of computationally expensive autoregression layers, making it more efficient.
Additionally, this model manages to learn latent codes that are more compressed than a
traditional VAE while still capturing most of the non-trivial structures. This model presents
comparable and competitive results, depending on the dataset, with other state-of-the-
art methods.

PixelVAE++ [80], a generative model based on PixelVAE, is a VAE with three types
of latent variables and, unlike PixelVAE, uses a PixelCNN++ network as a decoder. This
model also presents a renewed architecture, where part of the decoder is reused as an
encoder. PixelVAE++ presents superior results on the CIFAR-10 dataset compared to other
latent variable models.

Maalø e et al. [81] presented BIVA, a bidirectional interface VAE characterized by
a “skip-connected” generative model and an inference network formed by a bidirectional
stochastic inference path. This approach achieves good results, on par with other approaches,
and proves to be useful not only for image generation but also for anomaly detection.

2.3. Generative Adversarial Networks (GANs)

Generative models have a long history. However, it was not until the development
of deep learning that models began to achieve significant advances [82]. Introduced by
Goodfellow et al. [83], generative adversarial networks (GANs) have achieved important
results in image processing and have attracted interest from the academic and industrial
worlds in various fields of research and applications [84,85]. The most relevant variants
for image generation in GANs are conditional (cGANs), deep convolutional (DCGANs),
and recurrent adversarial networks [86].

As proposed by Mirza and Osindero [87], cGANs allow for the generation of images
conditioned on an additional input, which could be a class label or a reference image.
Over the years, new algorithms based on projections [88] have emerged, considerably
improving the performance of trained generators. Odena et al. [89] proposed a variant of
GANs called auxiliary classifier GANs (AC-GANs). In this new variant, each generated
sample has its corresponding class label in addition to the input noise, which is used to-
gether to generate an image. The discriminator gives both inputs a probability distribution,
which means that the objective function has two parts: the log probability that the source is
correct and the log probability that the class is correct. AC-GANs achieve excellent results
compared with traditional cGANs.

The ability to condition GANs on a second input opened the door to countless possi-
bilities for this architecture, from something as basic as training the same model to generate
cats and dogs to something that seems as futuristic as generating an image from a natural-
language text description. An example is the generation of more realistic images from
sketches [90–93].

Meanwhile, Radford et al. [94] presented deep convolutional GANs (DCGANs), a class
of GANs that introduce upscaling convolutional layers between the input and output
images of the generator, as well as using convolutional networks in the discriminator to
determine whether the image is real or fake. One of the indications for stable DCGANs is
that pooling layers should be replaced by scaled convolutions or “strided convolutions” in
the discriminator and by scaled fractional convolutions or “fractional-strided convolutions”.
This alteration of GANs considerably stabilizes the training and generates higher-quality
and higher-resolution images than traditional GANs. Given the success of convolutional
neural networks (CNNs) in image and video classification in recent years, DCGAN remains
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a suitable architecture for image-generation applications [86]. The works of [59,95] using
style-based can be highlighted.

Style-based architectures in GANs are based on deconstructing high-level feature
attributes from low-level features. An example of this type of architecture is StyleGAN [96],
a variant of GANs presented by NVIDIA, which is inspired by the style transfer literature.
Its architecture differs from that of traditional GANs by skipping the latent code input
layer instead of starting with a learned constant. Given a latent code, a nonlinear network
produces a version of a generative image found in a latent space, which then controls the
generator through adaptive instance normalization (AdaIN) in each convolutional layer.
This revolutionized form of image generation is possible due to its diversity and high
realistic capacity [97].

This architecture has received updates, such as StyleGAN2 [98], implementing pro-
gressive growth and regularizing the generator to drive good conditioning in the mapping
of latent codes to images. As an alternative, StyleGAN2-ADA [99] was released, where an
adaptive discriminator augmentation mechanism was implemented that stabilizes training
when training with a limited amount of data. These additions yield good results even with
little data. Finally, the latest update, called StyleGAN3 [100], implements small changes to
the architecture to ensure that unimportant information does not leak into the hierarchical
synthesis process. The resulting networks are on par with the StyleGAN2 FID results but
vary completely in their internal interpretation and are completely invariant to translation,
even at the sub-pixel scale. The results of this latest version of StyleGAN were better for
models focused on videos and animations.

Another style-based GAN architecture was presented by Microsoft StyleSwin [100].
This variant explores the option of building a generative adversarial network model using
pure transformers, in which the proposed generator adopts swin transform. This model is
scalable to high-resolution images and achieves excellent results with the FFHQ-1024 and
CelebA-HQ 1024 datasets.

On the other hand, one of the challenges that has been addressed in recent years is
the generation of new artistic images or those with a different meaning from the original
image. Given their performance and good results, GANs have enabled the generation of
new images from class labels [87,89] and the synthesis of text descriptions [101–104], which
allows for the generation of completely new artworks that represent feelings and emotions
indicated from text or as classes when training the model.

2.4. Art Generation Using GANs

The emergence of GANs had a significant impact on the generation of artistic works,
whether transforming photographic images into paintings or generating completely new
works. Nakano et al. [105] present ”Neural Painters”, a generative model of brush strokes
learned from a real, nondifferentiable and nondeterministic program. They propose a
method to ”motivate” an agent to paint using more human-like brush strokes when re-
constructing digits. Huang et al. [106] presented a method to teach machines to paint
like humans, who are capable of using small brush strokes to achieve excellent results in
their paintings. The goal of their model is to decompose the original image into different
brush strokes and then recreate them on the canvas. In order to mimic the human painting
process, the agent is trained to predict the next brush stroke based on the current state of
the canvas and the reference image to be painted.

A challenge that has been worked on in recent years is the generation of new artistic
images or images with a different meaning from the original. The emergence of GANs [83]
and the popularity they have gained in recent years, given their performance and good
results, definitely show potential to achieve this goal. GANs have allowed for the generation
of new images from class labels [87,89] and by synthesizing text descriptions [101–104],
which would allow for the generation of completely new artistic works that represent
feelings and emotions indicated in the form of text or as classes when training new models.
Zhang et al. [107] present an approach for generating artistic works with a specific artistic
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genre based on the content text given by the user. They build an input and output system
called “AI Painting”, which consists of three parts: the content, which is an object or scene
written in natural language; a word for aesthetic effect, for example, cheerful or depressive;
and an artistic genre, for example, impressionism or suprematism. The workflow of this
method consists of four steps: (1) generate an image based on the natural language content
input using StackGAN++ [104]; (2) modify the image to include the specified aesthetic effect;
(3) transfer the image to the corresponding genre using neural style transfer; (4) illustrate
the painting process in a short video.

Li et al. [108] presented a method for generating abstract paintings. Using the WikiArt
dataset and a k-means algorithm that automatically finds the optimal value of k for colour
segmentation, they managed to divide each painting into colour blocks. Then, the image
segmented by colour blocks was used as a real input image to the discriminator, teaching
the generator to paint abstract images with colour blocks.

Lisi et al. [109] introduced a new cGAN training method that allowed for the genera-
tion of samples from a sequence of distributions. Training was carried out using paintings
from a series of artistic movements, which represented a different distribution. Discoveries
in each distribution can be used by cGANs to predict “future” paintings. The experiments
demonstrate that this training is capable of generating accurate predictions of future art,
using paintings from the past as a training dataset.

Özgen and Ekenel [110] investigated the generation of artistic works using a varied
dataset, which includes images with variations in colour, shapes, and content. This variation
present in the dataset provides originality, which is very important for artistic creation
and its essence. One of the main characteristics of this model is that, instead of using
phrases as descriptive input, keywords are used. They propose a sequential architecture
of GANs, which first processes the given description and creates a base image, and the
following stages focus on creating high-resolution artistic-style images without worrying
about working with word vectors.

As can be observed, numerous proposals have emerged over the years aimed at
generating artistic works using computational techniques. This ongoing research has
led to remarkable results, including paintings that are often indistinguishable from real
works. However, while some approaches consider emotions in the generation of artistic
works [107,111], there are relatively few studies that focus primarily on emotions as the
central aspect of the generation process.

3. Materials and Methods

The research was divided into three stages: (1) data preparation, (2) modelling, and
(3) evaluation. In order to provide an overview, we explain each of them in depth, which is
reflected in Figure 1. The first phase consisted of data preparation. This process begins with
the selection of artworks associated with the landscape category. It is important to note that
owing to the type of training of the algorithm, each artwork must be associated with one or
more emotions according to an emotional model (which, in this case, is discrete [112]. This
allows for the generative art algorithm to be trained using a specific output class. Second,
the modelling phase consisted of 20 landscapes generated by the StyleGAN2-ADA tool.
Each of these images was associated with one of the four predefined emotions during the
training process, corresponding to contentment, amusement, sadness, and fear. In total,
80 images (20 landscape versions of their four emotions) were generated, which were
individually evaluated by 61 individuals (33 males and 28 females). Each participant
classified each image into one of four emotional categories. The evaluation is blind; that
is, the evaluators do not know the emotional category generated by the computer in
advance, thus ensuring the independence of the experiment between the evaluator and the
generative computational tool. Next, we present each stage in detail at a specific level and
the intermediate steps associated with each stage (see Figure 2).
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Figure 1. General scheme of the evaluation process of emotions generated by a generative neural
network. The method comprises three stages: data preparation, modelling, and evaluation.

Figure 2. Proposed methodology for emotion evaluation generated by a generative network.
Within each stage, there are multiple substages dedicated to image development and evaluation.

3.1. Data Preparation

This process involves image extraction and selection with certain emotions and cate-
gories. The Artemis dataset [113], which is composed of 80,031 records obtained from the
WikiArt dataset [114], was used. Artemis has five records for each artwork: (1) artistic style,
(2) artwork, (3) the emotion declared by the annotator, (4) an explanation by the annotator,
and (5) the number of annotators who participated in that work. Each record has at least
five annotators (evaluators) who defined nine types of emotions per image, corresponding
to anger, disgust, fear, and sadness as negative emotions and amusement, awe, content-
ment, and excitement as positive emotions. In total, Artemis collected 454,684 explanatory
statements and emotional responses. Although Artemis has 10 categories of artistic styles,
we used only the landscape category to reduce the level of figuration and identify stimuli
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and contextual information [115,116] in the identification of emotions for an observer. Thus,
13,358 records in this category were included.

The emotional categories of Artemis are discrete [112], which means that it is possible
to determine the predominant emotion, defined as the one with the highest frequency of
votes for a given record. However, some artworks do not have a predominant emotion.
Therefore, some records were discarded for our analysis. This occurs when there are few
evaluations for a given work, and/or several of them have the same frequency (the same
number of votes). Thus, the dataset was reduced to 9750 valid records in this study.

Finally, because all the records in Artemis have the name of the work, we used this
information to download the images in RGB format from the WikiArt dataset using a web
scraping technique [117]. The next process of training the StyleGAN2 ADA neural network
was performed using the set of images.

3.2. Modelling

As we have previously discussed, despite the existence of different style transfer
tools [118], we have selected StyleGAN2-ADA since related research indicates that this tool
generates good results with a reduced amount of training data [98]. This tool has been
configured to generate landscape images of the following four emotions: contentment,
amusement, fear, and sadness. According to these categories, it is possible to group this
into positive emotions (contentment and amusement) and negative emotions (fear and
sadness). The emotions that have been discarded are astonishment, excitement, anger,
and disgust. In the case of astonishment, this can be seen positively and negatively,
which would produce a certain ambiguity in its perception [119]. The other discarded
emotions were excitement, anger, and disgust since they could be subordinate to the selected
set. Therefore, they presented within one of the quadrants of a continuous emotional
model [120]. For this reason, we have finally considered the four emotional categories
described above (contentment, amusement, fear, and sadness). Furthermore, from the
point of view of the continuous emotional scale (CES) [114], we observe that the selected
emotional categories are situated in each of the quadrants of valence and arousal, thus
facilitating their differentiation from other similar emotions.

In order to carry out the training process, we have grouped the images into the four
emotional categories described above. The selected images have been preprocessed by
reducing their size to 256 × 256 pixels to be compatible with the training of the neural
network. This tool has been configured on a virtual machine with an NVIDIA Tesla T4
graphics card and the Linux operating system using the Ubuntu 18.04 LTS distribution.
Within the operating system, the StyleGAN2-ADA-Pytorch GitHub repository has been
cloned, and a Python 3.8 virtual environment has been created. The training process
was completed in 4 days 6 h and 58 min. In this way, the generative art tool generated
20 landscape images with their four emotional variants (contentment, amusement, sadness,
and fear), thus achieving a total set of 80 images (see examples in Figure 3).

3.3. Image Voting by Emotion

The next step of this research consists of the evaluation of each of the images generated
in the previous phase. For this, a form was designed using the Google Form platform, where
demographic data were collected regarding age, gender, nationality, level of education
and area of knowledge. For the latter, we followed the classification of knowledge areas
proposed by the Organisation for Economic Co-operation and Development [121]. In the
same form, the automatically generated landscapes were presented in their four emotional
versions (80 in total) randomly so as not to influence the evaluators by using any pre-
established order. The participants had to indicate one emotion out of the four options
(contentment, amusement, fear, and sadness) for each version of the landscape. The form
was available in English and Spanish from 30 October to 30 November 2023. The average
age of the evaluators was 30 years (std = 7), with a median of 24 years, a minimum
of 18 years, and a maximum of 55 years. Regarding gender, 33 participants declared
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themselves as male and 28 as female. There were no participants who indicated belonging
to another gender (non-binary or no information). Regarding their area of study, 35% of
the participants declared being associated with the area of engineering and technology and
29% with the area of social sciences. The areas of humanities and natural sciences together
represent only 11%. Finally, 70% of the participants declared that they belonged to the
graduate or postgraduate group as the highest level of education attained. The remaining
30% are grouped into students who have obtained a professional or high school degree (see
the indicators in Figure 4).

Figure 3. Examples of artistic works generated by the StyleGAN2 ADA tool are based on a landscape
dataset with four emotional categories. All images are completely new, and there are no existing
similar ones in the training set.

Figure 4. Cont.
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Figure 4. Sociodemographic data of the study participants: boxplot age, gender male or female,
country, area of study, and highest level of study obtained. More information about the groupings
used in the study is reviewed in the results section.

3.4. Evaluation

Finally, with the data obtained in the previous phase, a statistical analysis was carried
out to evaluate three aspects: the agreement between evaluators, the agreement between the
participants (mode) and the generative tool, and a comparative analysis of the agreement
reached between different groups of observers and the generative tool. This analysis was
carried out on the 80 images in the four emotional categories (contentment, amusement,
fear, and sadness). Additionally, the same analysis grouped these into positive (contentment
and amusement) and negative (fear and sadness) categories.

3.4.1. Agreement between Evaluators

This process consists of analyzing the inter-rater agreement among the survey partici-
pants when emotionally classifying the images generated by the generative tool to measure
the agreement between them. For this, we use Krippendorff’s alpha coefficient [122], which
evaluates the level of agreement between observers or participants in assigning categories
to a dataset. Unlike other indicators, it can be calculated for more than two evaluators,
with different types of variables and metrics in the case of missing data and for small
samples [7,123,124]. This step aims to assess whether images produced by the generative
tool elicit consistent responses across all participants. This will serve as a proxy to analyze
the agreement between each participant and the generative tool itself.

3.4.2. Agreement between Mode and SG2-ADA

For the evaluation of the agreement between the participants and the generative tool,
three aspects are analyzed: the inter-rater agreement, the fisher test, and the confusion
matrix. In this case, the inter-rater agreement is calculated by taking one of the evaluators
as a reference and comparing it with the other observers. Specifically, we take as a reference
the label with which the images have been created by the generative tool and compare it
with the predominant classification of the participants; that is, with the mode. Therefore,
we evaluate the agreement between two evaluators (AI-mode) using the Cohen kappa
coefficient [125], following the recommendations to use more than one concordance index
in a study [7]. Unlike Krippendorff’s alpha coefficient, which was used in the previous
section, the Cohen kappa coefficient only allows for analysis between two evaluators;
therefore, in this case, we used the mode and the emotional label used to generate the
images using the generative tool. In this way, it is feasible to determine, per image, the
level of agreement or concordance between the evaluators and the generative tool (see an
example of the process in Figure 5).
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Figure 5. Evaluation process and agreement between the mode and the StyleGAN2 ADA tool. Each
votes on each of the images. Then, the mode is calculated for each image to obtain the representative
emotion of each image, which is compared with the emotional label generated by the generative tool.

On the other hand, in this new methodology, we propose the utilization of the confu-
sion matrix, which is habitually used to evaluate the performance of a classification model.
The objective of this process is to compare the classification carried out by the participants
in the questionnaire of the images into the four emotions with the label assigned by the
generative tool. For the construction of the confusion matrix, we define the true class as
that class which is generated by the generative tool and the predicted class as that defined
as the mode of the classification of the participants. The precision, recall, and F1-score
metrics of the confusion matrix are also calculated to determine the prediction level ob-
tained as if it were a classification problem. With this, we compare the precision and recall
metrics obtained from the confusion matrices for different groups, utilizing gender (male
or female), area of knowledge (engineering and technology or social sciences) and level
of education (undergraduate or postgraduate) as segmentation variables using Fisher’s
test. We chose to compare these groups, as they constitute the majority of respondents,
providing a representative sample for analysis. Furthermore, the Jaccard index was utilized,
which allows for the determination of the level of intersection between the exposed results
among different datasets [126].

3.4.3. Proportion Analysis

In order to evaluate whether the agreement reached in the classification of the images
between the participants (mode) and the AI is similar for the images that represent the
same emotion, the proportion of agreement is calculated concerning the emotion chosen by
the participants (mode) and the emotional label that was provided to the generative tool
for each of the 80 images. First, the percentage of agreement is calculated by classifying the
images into the four emotional categories, and subsequently, the proportion of agreement is
calculated by coding the categories into positive and negative emotions. Then, in both cases,
a proportion comparison test was carried out using Cochran’s test, using the emotional
label with which the images were generated as the grouping variable.

4. Results

The results are presented below according to each of the evaluation stages described in
the methodology (Figure 2). In particular, we address the results of agreement, agreement
between the AI and individuals, and the proportion of agreement.
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4.1. Agreement between Evaluators

At the level of comparison on the classifications made by the study participants,
the results indicate that people do not agree with each other when classifying the images
into four emotional categories (contentment, amusement, fear, and sadness). However,
when the emotions are dichotomized into positive and negative, the indicator slightly
increases according to the Krippendorff alpha (see results in Table 1).

Table 1. Level of agreement according to segmentation by group and emotional category.

Four-Category Two-Category
n Kripperdorf Alpha Kripperdorf Alpha

All evaluators 61 0.2284 0.452

Female 28 0.2326 0.453
Male 33 0.2216 0.454

Social Science 18 0.2454 1 0.490
Engineering and Technology 35 0.2195 0.451

Spain 23 0.2268 0.437
Chile 28 0.2515 1 0.472

1 level of agreement is significant at 5%.

When analyzing the agreement according to some group segmentation (gender, coun-
try, or area of study), we observe slight differences between the different coefficients.
The most relevant level of agreement occurs in the group of the social science knowledge
area with the dichotomous emotions (0.4900), followed by the grouping by nationality
(Chile 0.4721) (see Table 1).

4.2. Agreement between Mode and Generative IA

This section analyzes the agreement between participant responses and the output
of the generative tool (StyleGAN2-ADA). For this, we use the mode of the evaluators’
classifications and the emotion used to generate the images.

Assuming that the emotion generated by the generative tool corresponds to the actual
(or true) class, we analyze the precision, recall and F1-score of the obtained data to quantify
the level of agreement in the classifications for each group of evaluators and the generative
tool. The results reveal important differences according to the group and the emotional
category. As stated in Table 2, the best classification results were obtained for the fear
category in most groups; however, the performance changed according to the group
analyzed. For example, in the female group, an F1-score of 0.76 was obtained, and in
the same emotional category, we achieved an F1-score of 0.89 for the postgraduate group.
The above indicates that by maintaining the same emotional category, different groups of
segmentation obtain different performances. In the opposite direction, we observe that for
the emotional category contentment, there is a lower level of classification for all groups
analyzed. The above could indicate that it is more complex for individuals to classify a
positive emotion over a negative one. On the other hand, when the emotions are binarized
into positive and negative categories, we obtain a high performance in general. However,
in some cases, it is observed that the detection of positive emotions is more difficult than
negative emotions (see Table 3). In order to analyze the statistical differences further, we
analyzed this point in the following section.
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Table 2. Level of agreement according to genre and four emotional category.

Genre Female n = 28 Male n = 33

Emotion Precision Recall F1-Score Precision Recall F1-Score
Contentment 0.58 0.7 0.64 0.67 0.8 0.73
Amusement 0.81 0.65 0.72 0.94 0.75 0.83
Fear 0.82 0.7 0.76 0.89 0.85 0.87
Sadness 0.65 0.75 0.7 0.76 0.8 0.78

OCDE study area Social Science n = 17 Engineering and Tech. n = 34

Emotion Precision Recall F1-Score Precision Recall F1-Score
Contentment 0.56 0.7 0.62 0.67 0.8 0.73
Amusement 0.76 0.65 0.7 0.88 0.75 0.81
Fear 0.76 0.65 0.7 0.86 0.9 0.88
Sadness 0.62 0.65 0.63 0.89 0.8 0.84

Country Spain n = 23 Chile n = 28

Emotion Precision Recall F1-Score Precision Recall F1-Score
Contentment 0.57 0.65 0.6 0.71 0.85 0.77
Amusement 0.71 0.6 0.65 0.94 0.8 0.86
Fear 0.88 0.7 0.78 0.95 0.9 0.92
Sadness 0.62 0.75 0.68 0.8 0.8 0.8

Study level Postgraduate Graduate

Emotion Precision Recall F1-Score Precision Recall F1-Score
Contentment 0.54 0.70 0.61 0.62 0.75 0.68
Amusement 0.71 0.50 0.59 0.75 0.75 0.75
Fear 0.94 0.85 0.89 0.84 0.8 0.82
Sadness 0.73 0.80 0.76 0.82 0.7 0.76

Table 3. Level of agreement according to genre and binary emotional category.

Genre Female n = 28 Male n = 33

Emotion Precision Recall F1-Score Precision Recall F1-Score
Positive 0.91 0.97 0.94 0.95 0.95 0.95
Negative 0.97 0.9 0.94 0.95 0.95 0.95

OCDE study area Social Science n = 17 Engineering and Tech. n = 34

Emotion Precision Recall F1-Score Precision Recall F1-Score
Positive 0.91 0.97 0.94 0.95 0.97 0.96
Negative 0.97 0.9 0.94 0.97 0.95 0.96

Country Spain n = 23 Chile n = 28

Emotion Precision Recall F1-Score Precision Recall F1-Score
Positive 0.89 0.97 0.93 0.93 0.93 0.93
Negative 0.97 0.88 0.92 0.93 0.93 0.93

Study level Postgraduate Graduate

Emotion Precision Recall F1-Score Precision Recall F1-Score
Positive 0.95 0.93 0.94 0.95 0.97 0.96
Negative 0.93 0.95 0.94 0.97 0.95 0.96

We analyze whether there are significant differences in the agreement between the
participants (mode) and the AI when classifying the images (in four categories and two
categories) between participant groups: men or women, engineering or social sciences,
and graduate or postgraduate. In order to do this, we compare the precision and recall of the
confusion matrices (Tables 2 and 3) using Fisher’s test. When the precision of the confusion
matrices is compared, the results show that there are only significant differences in the
case of the ’Sadness’ emotion. Specifically, precision is higher for men (p-value = 0.007),
for individuals in the ’Engineering and Technology’ area of knowledge at a 10% significance
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level (p-value = 0.07), and for graduates (p-value = 0.042) at 5% significance (see Table 4),
showing that these groups coincide to a greater extent with the AI.

Table 4. Comparison of the accuracy regarding four emotions between different groups (Fisher’s test).

p-Value 1

Emotion Male/Female Eng.-Tech./Social Sciences Graduate/Postgraduate

Contentment 0.383 0.319 0.37
Amusement 0.3 0.328 0.56
Fear 0.445 0.492 0.323
Sadness 0.007 ***↑ 0.070 *↑ 0.042 **↑

1 Significant differences are denoted with asterisks (* p < 0.1, ** p < 0.05, *** p < 0.01). Notethat in cases of signif-
icant differences, an upward arrow (↑) indicates that the accuracy will be higher for the category mentioned first.

If emotions are dichotomized into positive and negative, and different groups are
compared, the results show that there are no significant differences in precision in any case
(p-value > 0.1) (see Table 5).

Table 5. Comparison of the accuracy of positive/negative emotions between different groups
(Fisher’s test).

p-Value
Emotion Male/Female Eng.-Tech./Social Sciences Graduate/Postgraduate

Negative 0.683 0.74 0.327
Positive 0.512 0.361 0.673

As we can observe in Table 6, the comparison regarding recall for the different groups
shows that there are only statistically significant differences in the classification of images
of the ’Fear’ emotion between the two categories of the ’Area of Knowledge’ variable at
10%, with recall being higher for the ’Engineering and Technology’ group (p-value = 0.064).

Table 6. Comparison for recall regarding four emotions between different groups (Fisher’s test).

p-Value 1

Emotion Male/Female Eng.-Tech./Social Sciences Graduate/Postgraduate

Contentment 0.358 0.358 0.5
Amusement 0.366 0.366 0.1
Fear 0.255 0.064 *↑ 0.5
Sadness 0.5 0.366 0.358

1 Significant differences are denoted with asterisks (* p < 0.1). Note that in cases of significant differences, ↑
indicates that the accuracy will be higher for the category that is named first.

The results in the case of the dichotomous emotion variable show that there are no
significant differences in recall in any case (p-value > 0.1) (Table 7).

Table 7. Comparison of positive/negative emotion recall between different groups (Fisher’s test).

p-Value
Emotion Male/Female Eng.Tech./Social Sciences Graduate/Postgraduate

Negative 0.5 0.338 0.692
Positive 0.692 0.753 0.308

In order to analyze the results further, we used the Jaccard index, which allows us
to evaluate the level of intersection between the participants’ responses for the image
generated by the generative tool. The results of this indicator point to relevant differences
between four emotional categories versus two emotional categories (positive and negative).
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It is observed that there is a greater intersection between the responses of the participants
in two categories compared to four emotional categories. This is because there is greater
agreement with the emotion expressed by the generative tool when the emotional categories
are positive and negative. On the contrary, when we increase the number of emotions, the
users do not reflect an agreement with what is expressed by the tool. These results are
consistent with those previously obtained in Tables 2 and 3.

A relevant result is shown in the social science group, where the highest level of
agreement with the generative tool is obtained for two emotions (70.08%). The same
situation occurs for the participants from Chile, reaching 70.18% agreement with the tool.
In general, a 68.49% agreement was obtained between all participants and the generative
tool only when we binarized the emotions. This result drops to 37.06% when we have four
emotional categories (Table 8).

Table 8. Jaccard index results segmented by emotional category and analysis group.

Four-Category Two-Category
n Jaccard Index Jaccard Index

All evaluators 61 0.3706 0.6849

Female 28 0.3565 0.6735
Male 33 0.3825 0.6947

Social Science 18 0.3645 0.7008
Engineering and Technology 35 0.3795 0.6939

Spain 23 0.344 0.6587
Chile 28 0.4069 0.7018

In order to visualize the most relevant results at the intersection level, Figures 6 and 7
illustrate all the images that obtained a percentage lower than 75% in the Jaccard index with
the generative tool. As can be seen in Figure 6, there is indiscriminate disagreement in both
positive and negative images for both male and female genders; however, the proportion of
correct answers is more balanced between positive emotions (contentment and amusement)
and negative (fear and sadness) emotions.

Regarding the classifications with an agreement above 90% with the emotion gen-
erated by the generative tool, differences are observed between the gender categories,
although there is one image with the fear emotion associated, which achieved 100% accu-
racy in the classification (Figures 8 and 9).

To conclude the study in this section, we analyze the level of agreement using the
Cohen kappa coefficient (Table 9). For recall in this process, we work with the mode
and the emotional label used by the generative tool as evaluators. Following Landis and
Koch [127], the results show an almost perfect agreement using the mode of all observers
in the binarized emotional category (k = 0.88). This coefficient is repeated in the grouping
of Chilean nationality and the area of knowledge in engineering and the social sciences.

Table 9. Results of the Cohen kappa index segmented by emotional category and group of analysis.

Four-Category Two-Category
n Cohen Kappa Cohen Kappa

All evaluators 61 0.7 0.875

Female 28 0.616 0.85
Male 33 0.716 0.85

Social Science 18 0.5166 0.85
Engineering and Technology 35 0.75 0.875

Spain 23 0.55 0.8
Chile 28 0.7833 0.875
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Figure 6. Percentage of agreement with Jaccard’s index for the female gender with the generative
tool under 75%.

For the four-emotional category situation, the coefficients are more disparate, reaching
a substantial level of agreement in most cases, except in the grouping of Spanish nationality
and the area of social science study, which would be within moderate agreement [127].
The highest percentage of agreement is obtained by the Chilean nationality grouping
(k = 0.78; Table 9).

4.3. Analysis of Proportions

This section aims to investigate whether the proportion of participants agreeing with
the generative tool (SD-ADA2 GAN) remains consistent across different images. Specifically,
we examine if this proportion remains invariant when individuals categorize the 20 images
that share the same ground truth label (generative tool). In order to achieve this, we first
quantify the percentage of participants who agree with the classifications of the AI for each
of the 80 images. Subsequently, we conducted Cochran’s testing to ascertain if statistically
significant differences exist among the images generated with the same emotional label.
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Figure 7. Percentage of agreement with Jaccard’s index for the male gender with the generative tool
under 75%.

In Figure 10, we represent the percentage of individuals who have agreed with the AI
when classifying the image with the emotional label “contentment”. As we can observe,
more than 60% of the participants have selected the actual label in 10 of the 20 images.
There is also diversity in the agreement, with image 15, version 4 being the one in which
more individuals agree with the AI, specifically 79%. In contrast to this percentage, and at
the other extreme, only 15% of participants agree with the AI when classifying image 7
version 1. We can affirm that these differences are statistically significant (p-value < 0.001.
See Table 10).

In the case of the images that the AI has generated with the label “Amusement”,
as observed in Figure 11, it seems that the percentage of people who agree with the AI
is, in general, lower than for the emotion “Contentment”, reaching a proportion greater
than 0.6 in only 3 out of the 20 images. Although, at first glance, it may seem that the
percentages do not differ so much, we find significant differences when comparing the
proportions with Cochran’s test (p-value < 0.001; see Table 10).
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Table 10. Comparison of proportion of agreement between AI and raters (mode) in the classification
of images labelled with the same emotion (Cochran’s test).

Emotion Contentment Amusement Fear Sadness

p-value 1 <0.001 *** <0.001 *** <0.001 *** <0.001 ***
1 Significant differences are denoted with asterisks (*** p < 0.01).

Figure 8. Percentage of agreement with Jaccard’s index for the female gender with the generative
tool over 90%.

The emotion “Fear” seems to reach a higher agreement since there are 11 images in
which more than 60% of the individuals chose the emotion with which they had been
generated, reaching 75% in two of them. However, we also find very low percentages (15%
and 16%) for two of the images (Figure 12). Again, there are significant differences when
comparing the proportions (p-value < 0.001; see Table 10).

Finally, when analyzing the emotion “Sadness”, in Figure 13, we observe that more
than 60% of participants agree with the AI when classifying 8 out of the 20 images. As has
happened with the other emotions, the differences between the proportions are statistically
significant (p-value < 0.001; see Table 10).

To sum up, the results expressed in Table 10 indicate that the proportion of people
who agree with the generative tool is not similar for the different images, not even when
we compare the classification of images generated for the same emotion (p-value < 0.001).
Analyzing the proportion of agreement when the emotion variable is dichotomous (nega-
tive/positive), there is also no similar percentage for images labelled with the same emotion
(Table 11).
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Figure 9. Percentage of agreement with Jaccard’s index for the male gender with the generative tool
over 90%.

Figure 10. Proportion of individuals who agree with the AI when classifying images labelled
as Contentment.
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Figure 11. Proportion of individuals who agree with the AI when classifying images labelled
as amusement.

Figure 12. Proportion of individuals who agree with the AI when classifying images labelled as Fear.

Figure 13. Proportion of individuals who agree with the AI when classifying images labelled
as sadness.

Table 11. Comparison of the proportion of agreement between AI and raters (mode) in the classifica-
tion of images labelled with the same negative or positive emotion (Cochran’s test).

Emotion Negative Positive

p-value 1 <0.001 *** <0.001 ***
1 Significant differences are denoted with asterisks (*** p < 0.01).

5. Discussion

The technological development of artificial intelligence has been exponential in recent
years, and the advances in using this tool for analyzing emotional aspects across various
fields of knowledge have been significant [82]. However, to the best of our knowledge, we
have not found studies that analyze the level of agreement between the emotions generated
by generative artificial intelligence tools and human assessments. Closely related to this
issue is the research conducted by Lopatovska [128], which focuses on works created
by humans.
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For this reason, we propose a novel methodology that begins with training a model
using artworks catalogued by emotions from the Artemis dataset [113] to generate 20 land-
scape images. For each image, four emotional variants were created (contentment, amuse-
ment, sadness, and fear), which can be grouped into positive (contentment and amusement)
and negative (sadness and fear) categories by dichotomizing the problem [13,129], resulting
in a total of 80 images. By using this dataset, an online questionnaire was designed to
understand human emotional appreciation, obtaining 61 responses (33 male and 28 female)
from participants across different countries, educational levels, and fields of study.

By using the obtained data, different analyses were conducted to address the research
hypothesis regarding whether images created by generative processes with a specific
emotion align with human emotional responses.

First, the agreement among evaluators regarding their emotional classifications of
the AI-generated images was examined. For this purpose, the Krippendorff alpha coef-
ficient was utilized. According to Krippendorff [122], the results indicate a fair level of
agreement among the evaluators, with segmentation across the four emotional categories
(α = 0.21–0.40). When emotions are categorized as positive and negative, the index increases,
indicating a moderate level of agreement (α = 0.41–0.60).

A comparative analysis of different agreement indices indicates that the Krippendorff
alpha tends to yield low values [7]. However, its utilization allows for a more nuanced
interpretation of the phenomenon, accommodating more evaluators and various data
typologies [130]. The results obtained using the Krippendorff alpha align with findings from
other studies on agreement and emotions [131], underscoring the high level of subjectivity
in emotion classification. However, unlike our experiment, these studies utilize ordinal
data. This level of subjectivity is further corroborated in our analysis using Cochran’s test,
as it reveals that the evaluators do not achieve similar proportions when classifying the
images, even within the same emotional category.

The following analysis aimed to evaluate the level of agreement for each emotion
generated by the generative tool, considering this value as the true representation and
comparing it with the mode of the classifications made by the observers.

An analysis of precision, recall, and F1-score reveals that the fear category achieves
the best classification performance across all analyzed groups. Specifically, within the
Country segmentation, the fear category exhibits an F1-score of 0.92. In contrast, certain
emotional categories consistently demonstrate lower performance, particularly the content-
ment category. This suggests a greater level of concordance between the expressions of
the generative tool and user responses when the emotion is negative. When performing
the same analysis with binarized emotions, the performance in both cases exceeds 90%
for the F1-score. This allows us to conclude that there is an agreement between human
assignments and artificially generated images regarding the classification of an image as
positive or negative.

Next, Fisher’s test was employed to determine precision and recall among groups
of evaluators. Regarding the four emotion categories used, sadness consistently yields
the most significant differences in precision across all cases in the male/female grouping
(p-value = 0.007), in the comparison between technical engineering and social sciences
(p-value = 0.07), and the education level comparison between undergraduate and post-
graduate (p-value = 0.042). In contrast, statistically significant differences for recall for
the fear emotion within the engineering and technology knowledge area (p-value = 0.064)
are shown.

To further analyze the results, the Jaccard index was employed to measure how closely
the evaluators’ classifications align with the categories generated by the generative tool.
The Chilean national group achieved the highest intersection (J = 0.7018), followed by the
group from the social sciences area (J = 0.7008).

Finally, following recommendations to utilize more than one concordance index [7],
the Cohen kappa index was employed. Unlike Krippendorff’s alpha, the Cohen kappa is
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limited to analysis involving two evaluators. This limitation was addressed in our research
by using the mode and the categories generated by the tool.

Following Landis and Koch [127], the agreement results fall within the ‘almost perfect’
range across all groups when emotions are binarized into positive and negative. Among the
four emotional categories, the Chilean nationality group achieved the highest agreement
index, with a k of 0.7833, followed by the group from the engineering area (k = 0.75). This
analysis further indicates that agreement is more clearly achieved when the classification is
simplified to positive and negative categories. In summary, it is observed that all indicators
improve when the emotional classification problem is reduced to these two categories,
which is a common approach in research on emotion recognition and study [132]. This
suggests that achieving agreement is more feasible both among evaluators and between the
mode of human classification and the emotions generated by the generative tool. Notably,
negative emotions yielded the highest levels of agreement in our study. Achieving complete
agreement seems complex. Evidence for this is found in the research by Lopatovska [128],
which proposes three methodologies for the emotional classification of works of art created
by humans yet does not achieve a significant level of agreement in any case, even with
human classifications.

6. Limitations and Future Directions

Among the main limitations of this research, the small number of evaluators who
responded to the questionnaire stands out, as it constitutes a nonrepresentative sample
that hinders the ability to draw significant conclusions regarding the level of agreement on
emotions, given their inherent subjectivity.

Additionally, it is recognized that social and cultural context plays a crucial role in
emotional appreciation. Therefore, expanding the sample to include participants from more
countries would facilitate comparative analyses. Similarly, involving individuals from a
broader age range would enhance the comprehensiveness of the analysis.

Another factor to consider is that the generated sample for classification was limited to
landscapes, which restricts the number of referential elements that could aid in classifying
emotions more distinctly (e.g., faces). Future research should incorporate images with
varying levels of representation and different elements, enabling an examination of the
level of agreement across different degrees of representation. Furthermore, it would
be interesting to investigate the key visual elements influencing emotional classification
decisions, following previous research that has analyzed aspects such as colour, shapes,
and textures.

Finally, our study revealed that images conveying negative emotions were classified
more effectively than those depicting positive emotions, suggesting that evaluators per-
ceived negative emotions more clearly. This finding opens up new avenues for research to
explore the underlying reasons for this phenomenon.

7. Conclusions

Given the need to validate the content generated by artificial intelligence, this research
focuses on emotional validation through the statistical analysis of the level of agreement
between a set of artificially generated images with associated emotions and the classification
of these images by humans.

In order to achieve this, a methodology was proposed that includes training
StyleGAN2-ADA using the Artemis dataset to generate 20 landscape images. For each
image, four emotional variants were created (contentment, amusement, fear, and sadness),
which can be grouped into positive and negative emotions. The human classification was
conducted through an online questionnaire. Based on the obtained data, statistical analyses
were performed to evaluate the level of agreement among individuals, the mode of the
responses, and the emotions generated by the AI and analyze the proportions.

The research conducted demonstrates the complexity involved in the study of emo-
tions and the high level of subjectivity in their classification. Some results indicate, par-
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ticularly with emotions binarized into positive and negative categories, a good level of
agreement across different analyses, suggesting that the products generated by image tools
appear to be reliable.

The main limitation of this research is the sample size, which cannot be considered
representative. Future directions for this research include expanding the sample size,
both in terms of the number of evaluators and their backgrounds, age, educational level,
and areas of study.

We believe it is essential to advance in this field of study, as it would help validate the
results generated by generative tools and enhance our understanding of their usefulness
and limitations. Additionally, this research contributes to a deeper understanding of human
emotional appreciation.
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