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Abstract—This paper presents a method of point-to-point cor-
respondence analysis based on a combination of two techniques:
(1) correspondence of multiple points through similarity of invari-
ant features in three views by using a standard feature method,
and (2) a combination of multiple partial solutions through the
trifocal geometry. This method allows the determination of point-
to-point geometric correspondence by means of the intersection
of multiple partial solutions that are weighted through the
MLESAC algorithm. The main advantage of our method is
the extension of the algorithms based on the correspondence of
invariant descriptors, generalizing the problem of correspondence
to a geometric model in multiple views. For all the images
analyzed, we showed that the point-to-point correspondence can
be generated through a multiple geometric relation between three
views. An important characteristic of our method is that can be
used in sequences of images that have a low signal-to-noise ratio.

I. INTRODUCTION

Correspondence analysis consists basically in determining
a set of points in an image such that they are identified as the
same in other images of the same scene. Determining these
correspondences computationally is not a simple task. We
must consider that corresponding points can undergo various
transformations depending on the points of view from which
they have been captured. This is due to the geometric and/or
photometric transformations caused by the motion of the ob-
ject as well as by the movement of the camera with respect to
the object. To increase the problem’s complexity, it is possible
for other points to have a texture and/or color similar to that
of the point whose correspondence we want to determine,
increasing the complexity of the task of discriminating among
possible corresponding pairs and triplets.

Different approaches for solving the correspondence match-
ing have been developed over the last 30 years. Some of them
are, for example, methods based on the analysis of invariant
descriptors [1], estimation of affine transformations, homo-
graphies and estimation of perspective transformations [2],
epipolar geometry analysis [3], and methods based on optical
flow [4]. In general, all these methods differ in the type of
motion of the objects contained in a video sequence, or in the
simplest case through correspondence between two images.
If the scene is static and there is no continuous change of
the camera’s position, the problem is reduced mainly to the
analysis of the epipolar geometry for two images through
stereo vision. Unfortunately, none of the above methods filter
out wrong matchings in multiple views. To avoid this problem,

here we propose a method to determine the point-to-point
correspondence in sequences of three images through multiple
partial solutions. Since we use a geometric model that is
independent of the objects, it is possible to determine the
position of corresponding points in those views in which the
point may be occluded. In the following sections we detail our
methodology.

II. PROPOSED METHODOLOGY

The first task to solve is to find a set correspondences
between two images; here we used the method described in
[6]. The main idea was to model the error through the robust
estimation of the MLESAC algorithm considering a multiple
epipolar lines analysis. In this research we propose a similar
analysis but considering three corresponding views.

A. Tracking in three views

The analysis in three views allows modeling all the ge-
ometric relations generated in the 3D space, regardless of
the structure contained in each image [5], [7]. One of the
great advantages of geometric modeling in three views, and
particularly of the estimation of the Trifocal tensor [5], is
that depends only on the motion between the views and on
the internal parameters of the cameras. Additionally, it can
be completely defined by the projection matrices of which
it is composed. Therefore, our analysis is based on how to
estimate the error of the projection matrices from the set of
correspondences in three views.

Formally, the trifocal tensor1 T = (T rs
t ) is a 3×3×3 matrix

that codes the relative motion between the I1, I2, I3 views.
As already mentioned, one of its most relevant properties
is that from the estimation of the tensor we can determine
the position of a point s in the I3 plane using the positions
of the correspondences {r ↔ m} of the first and second
views, respectively. The re-projection is defined in terms of the
r = [x1, y1, 1]>, m = [x2, y2, 1]> positions in homogeneous
coordinates and of the tensor T, derived from the first two
trilinearities of Shashua [8]. In particular, we use the re-
projection by means of the point-line-point method proposed
by [5, pp.373]. For that purpose, let ŝ be the re-projection of
the trifocal tensor in the third view, defined as ŝ = [x3, y3, 1]>.

1See Hartley and Zisserman [5] for details on the computation of the trifocal
tensors.
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Fig. 1. Reprojection process of hypothetical points using a third view through
the trifocal tensors. In the example, the projection of point ŝ1 was determined
with the correspondences {1,2,3,4}, that of point ŝ2 with correspondences
{2,5,7,8}, and that of point ŝ3 with correspondences {1,2,6,9}.

Unfortunately, the estimation of the projected point ŝ is
subject to an error that can be generated for two reasons:
(1) The intrinsic error in the estimation of the tensors due
to an incorrect choice of the set of correspondences, and (2)
the correspondence error between the r and m pairs. Even
in the ideal case, when the tensors are relatively stable in
uncalibrated sequences, there is always an error between the
hypothetical correspondence s and the reprojected point ŝ.
For simplicity, we assume that the distance between these
points is the Euclidian distance ds of point s, defined as
ds = ‖ŝ − s‖. Each subset generates a re-projection in the
ŝ1, ŝ2, ŝ3 positions, corresponding to the re-projection of the
tensor in the third view, as shown in Fig.1.

Extending the above example, let i ∈ [1, . . . , k] be the
number of correspondences used. In this way, from each
i subset it is possible to estimate the trifocal tensor Ti.
Each tensor is unique and independent of the previous one,
provided the selection of the subsets is different. Assuming
independence between i sets, let ŝi be the re-projection of the
tensor Ti generated from the re-projection of the pair of points
in correspondence r and m (or {r↔m}).

B. Error compensation by MLESAC algorithm

MLESAC is a robust estimation algorithm to establish
point correspondences in multiple views [9], generalizing the
RANSAC estimator [10]. In our proposal, MLESAC is an
intermediate step in the error estimating process that allows
for weighting of individual errors. One of the main advantages
of estimating the error in this way is that the inliers, or correct
correspondences, have a high weight, in contrast with the
RANSAC algorithm, in which only the outliers are considered
in the cost function. MLESAC is designed considering that the
error Li is a mixture of Gaussian and uniform distribution,
where dsi is the error of the estimation of the trifocal tensor,
for all i ∈ [1, . . . , k] subset such that

Li =

(
γ

(
1√

2πσ2

)
exp

(
− (di)

2

2σ2

)
+ (1− γ)

1

ν

)
(1)

where γ is a mixing parameter, ν is an a priori diameter of
the search window used to handle false matches, and σ is the
standard deviation of the error in each coordinate. Parameters
γ and ν are not known, but they can be estimated by means of
the EM [11] algorithm (for more details see [9]). Thus, the EM
algorithm estimates the parameters and the probability that a
putative selection will be an inlier or an outlier. In this way,
the objective function is to minimize the log-likelihood of the
error, which in our case is the distance dsi between a subset
of trifocal re-projection (Fig.1). Normally three iterations are
needed for the algorithm to converge. Recall that MLESAC
uses the random selection of random solutions. In this way
the estimation of the log-likelihood of the i-th hypothesis of
each partial solution allows us to weight correctly the real
distance di. In order to perform this task, we re-scale the values
contained in the log-likelihood vector L for all i ∈ [1, . . . , k],
as:

S = |max(L)− Li|+ 1, (2)

where S is a vector that give more relevance to the lower
values of the log-likelihood vector L. For instance, when Li

is a maximum, the result is one. Conversely, when Li is a
minimum, the result is a maximum. Partial log-likelihood (Li)
values are used in this estimate, so that the dsi distance is
weighted according to:

d̃si = dsi

(
Si∑k

i=1(Si)

)
, (3)

where d̃si is a weighted distance that considers the error associ-
ated of each i trifocal tensor. This procedure allows weighting
and reestimating the distance of each tensor according to the
log-likelihood of the projection error with respect to the set
of hypothetical points in the third view. The estimation of the
error allows weighting correctly the distance dsi , increasing or
decreasing it according to the size of its error. Therefore, to
determine a correspondence, we determine the distance with
respect to the set Θ. Finally, to identify the correspondence of
pairs {r↔m} in the third view, the following relation must
be satisfied:

{r↔m↔ ∗} =

{
si if d̃si < ε

@ if d̃si ≥ ε
(4)

where {∗} ∈ Θ = {s1, s2, s3}, and ε is a distance measured
in pixels. The final result allows the determination of which
points are corresponding and which, depending on a thresh-
old level, must be discarded. A complete description of the
proposed methodology is showed in Algorithm 1.



Algorithm 1 : Trifocal Geometric Correspondence (TRIGC)
algorithm in three views.
Require: Set of matchings candidates in three views.
Ensure: Set of wrong matchings filtered out in three views.

1: Determine n corresponding points in three views. These
triplets are known or estimated in a process that can
be off-line, or automatic by means of the analysis of
correspondences; for example, by SIFT [1] or SURF [12].

2: Determine pairs of point-to-point correspondence in the
first and second view (e.g. BIGC [6]).

3: Determine i trifocal tensors Ti, where i ∈ [1, . . . , k]. Each
i-subset is composed by multiple corresponding points
depending of the algorithm used to estimate the trifocal
tensor.

4: Determine the re-projection of the trifocal tensor Ti for
each pair corresponding to step 2.

5: Determine the error associated with each trifocal tensor
with the MLESAC algorithm and re-estimate the distance
d̃si between the hypothetical correspondence and the pro-
jected position.

6: Assign the correspondence with point s provided that the
d̃mi < ε restriction is fulfilled for every pair {r 7→m}.

III. EXPERIMENTAL RESULTS

This section presents the experimental results generated
with sequences of uncalibrated images in three views. A
set of 120 images of bottle necks with manufacturing faults
generated in [13] (Fig. 2) is used. In all the experiments we
have considered two standard indicators [14]: r = TP

TP+FN

(recall) and p = TP
TP+FP (precision). TP is the number of

true positives or correctly classified correspondences. FN is
the number of false negatives or real correspondences not
detected by our algorithm. FP is the number of false positives
or correspondences classified incorrectly. These two indicators
can be joined in a single measure F-score = 2·p·r

p+r [14]. Ideally,
one can expect that r = 100%, p = 100%, and F-score = 1.

Next, we evaluated the influence of parameter i ∈ [1, . . . , k]
when the number of solutions of the proposed method is
varied. In the same way we evaluated the influence of the
Euclidian distance ε. We recall that both parameters can be
modified in combination. For that we separated the analysis
varying each of them independently. Recall that the variations
of parameter i increase the number of trifocal tensors for three
views. Also, parameter ε determines the Euclidian distance be-
tween the re-projection of the trifocal tensor and the hypothet-
ical correspondence (see Fig. 1). As we already established,
the determination of a new solution of the geometric problem
in three views implies the re-projection of a new geometric
solution, restricting the search space for a correspondence. In
the latter case we must consider that the re-projection requires
correspondence in the first two views to determine the re-
projection in the third view, making it necessary to have three
corresponding points in three images. In all the experiments
we considered the average performance of the set of images.

1 2 3 4 5 6 7 8

Fig. 2. Sequence of images of bottle necks for the tracking process as a
quality control method.
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Fig. 3. Influence of parameter i as the maximum tolerance distance in pixels
ε is varied

In the following subsections we will detail these aspects.

Sequences of bottle images: The set contains 120 sequences
of images of bottle necks with faults or regions with defects
generated in [13] (Fig. 2). Each sequence is composed of three
images with an angle of rotation α = 15. From the captured
images we have extracted subimages of 1000 × 250 pixels.
The base correspondence was determined by means of markers
outside the object that comply with the object’s motion. In this
case the objective of the point-to-point correspondence was to
determine the trajectory of multiple defects in the sequence
that must be detected to determine the quality of the bottle in
a multiple view inspection process.

Evaluation in relation to the number of partial solutions:
We got the best performance when a discretized distance ε = 0
was used (Fig. 3). These results indicate that at ε = 0 we get
a trifocal correspondence with a performance F-score= 0.97.
It is interesting to note that as parameter ε is increased, the
performance of the method starts dropping.

The maximum performance of the system using the opti-
mum ε value for each variation of parameter i is shown in
Fig. 4. It is seen that from five combinations (i = 5), the best
distance remains at zero pixels. The results of this graph agree
with those presented previously, because with i = 9 we get
the best performance.
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Fig. 4. Best performance of correspondence varying according to the number
of solutions. The best ε value has been chosen in each performance curve.
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Fig. 5. Influence of distance (ε) on the detection of correspondences for
different numbers of solutions (k). The larger the number of solutions, the
shorter the distance ε.

Evaluation according to re-projection distance: In the
previous evaluation we varied parameter i to determine its
influence on the performance of the system of correspon-
dences. In this case we evaluated the influence of the distance
ε keeping parameter i fixed. Because of the large number of
curves generated, we graphed only odd numbers of parameter
i (Fig. 5). Below we detail the results. Clearly there is
an important difference when using a trifocal tensor versus
multiple trifocal tensors. For example, when using a single
trifocal tensor, the maximum performance is obtained at a
distance of 6 pixels (ε = 6), with an F-score= 0.95. In
contrast, when using nine combinations we get a performance
F-score= 0.97 at a discretized distance ε = 0. The latter result
shows the effectiveness of using the multiple intermediate
solutions combination by the proposed method.

IV. CONCLUSIONS

In this paper we have developed two important contri-
butions. First, we presented a method that uses multiple
geometric solutions in three views to determine point-to-point
correspondence and filter out wrong matchings. Second, for
each geometric model we have determined the real distance
with respect to corresponding point by means of the MLESAC
estimator, in that way weighting the error associated with each
intermediate solution. The main novelty of our proposal is the
geometric methodology for solving the problem of the estima-
tion of point-to-point correspondence, regardless of the angles
of the points of view of the objects contained in the images and

of the geometric transformations present in them. We call this
algorithm as Trifocal Geometric Correspondence (TRIGC). It
is important to note that the point can be occluded in the
following views, but its position remains valid because our
method is based on a geometric model that defines the scene.
We also show that the use of multiple random solutions makes
it possible to improve the performance of the correspondence.
Although our method starts from the basis that there is a set of
points in previous correspondence necessary to determine the
trifocal tensors, it is designed to maximize the correspondences
in specific regions of each image and not necessarily in a
specific point that is not relevant to that method. Finally,
for the images analyzed, we showed that the point-to-point
correspondence can be generated through a multiple geometric
relation between three views and it can be used in sequences
of images that have a low signal-to-noise ratio. In those cases
invariant algorithms will not achieve a good performance due
to the appearance of many false alarms.

ACKNOWLEDGMENT

This work was supported by the National Commission of
Science and Technology (CONICYT, Chile). Fondecyt grant
no. 11100098.

REFERENCES

[1] D. G. Lowe, Distinctive image features from scale-invariant keypoints,
International Journal of Computer Vision 60 (2) (2004) 91–110.

[2] A. Fitzgibbon, Robust registration of 2d and 3d point sets, Image and
Vision Computing 21 (13–14) (2003) 1145–1153.

[3] R. Vidal, Y. Ma, S. Soatto, S. Sastry, Two-view multibody structure from
motion, International Journal of Computer Vision 68 (1) (2006) 7–25.

[4] J. L. Barron, D. J. Fleet, S. S. Beauchemin, Performance of optical flow
techniques, International Journal of Computer Vision 12 (1) (1994) 43–
77.

[5] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision,
Cambridge University Press, Cambridge, UK, 2000.

[6] M. Carrasco, D. Mery, Bifocal matching using multiple geometrical
solutions, in: Proceedings of the 5th Pacific Rim conference on Advances
in Image and Video Technology - Volume Part II (PSIVT), no. 7087,
Springer, 2011, pp. 192–203.

[7] O. Faugeras, Q.-T. Luong, T. Papadopoulo, The geometry of multiple
images: The laws that govern the formation of multiple images of a
scene and some of their applications, The MIT Press, Cambridge MA,
London, 2001.

[8] A. Shashua, Algebraic functions for recognition, IEEE Transactions on
Pattern Analysis and Machine Intelligence 17 (8) (1995) 779–789.

[9] B. J. Tordoff, D. W. Murray, Guided-mlesac: faster image trans-
form estimation by using matching priors, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 27 (10) (2005) 1523–1535.
doi:10.1109/TPAMI.2005.199.

[10] M. Fischler, R. Bolles, Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,
Communications of the ACM 24 (6) (1981) 381–395.

[11] A. P. Dempster, N. Laird, D. B. Rubin, Maximum likelihood from
incomplete data via the em algorithm, Journal of the Royal Statistical
Society. Series B 39 (1977) 1–38.

[12] H. Bay, A. Ess, T. Tuytelaars, L. Gool, Surf: Speeded up robust features,
Computer Vision and Image Understanding (CVIU) 110 (3) (2008) 346–
359.

[13] M. Carrasco, L. Pizarro, D. Mery, Visual inspection of glass bottlenecks
by multiple-view analysis, International Journal of Computer Integrated
Manufacturing 23 (11) (2010) 925.

[14] D. Olson, David L.; Delen, Advanced Data Mining Techniques, Springer,
2008.


