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Human beings are very skillful at reaching for and grasping objects under multiple conditions, even when
faced with an object's wide variety of positions, locations, structures and orientations. This natural ability,
controlled by the human brain, is called eye–hand coordination. To understand this behavior it is necessary
to study both eye and hand movements simultaneously. This paper proposes a novel approach to detect
grasping movements by means of computer vision techniques. This solution fuses two viewpoints, one view-
point which is obtained from an eye-tracker capturing the user's perspective and a second viewpoint which is
captured by a wearable camera attached to a user's wrist. Utilizing information from these two viewpoints it
is possible to characterize multiple hand movements in conjunction with eye-gaze movements through a
Hidden–Markov Model framework. This paper shows that combining these two sources makes it possible
to detect hand gestures using only the objects contained in the scene even without markers on the surface
of the objects. In addition, it is possible to detect which is the desired object before the user can actually
grasp said object.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Human movement analysis is an area of study that has been
quickly expanding over the past few years. Progress in analyzing
image sequences, the evolution of computer systems and the minia-
turization of technology used to capture movement, have made
motion analysis applications possible in areas such as athletic perfor-
mance analysis, surveillance, man–machine interfaces, entertainment
systems, video-games and robot-based rehabilitation therapy, among
others [54,36,46,41,53,17].

On the human gesture level, the majority of research has been
conducted around the analysis of gesture language, and in particular,
sign language which is probably the most common. Among certain
industrial sectors, sign language composed of limb and facial move-
ments is also used to build human–computer interfaces. However,
communicative gestures are only one small part of the wide range
of gestures made by humans. Within the taxonomy of gestures, we
will distinguish grasping movements. These gestures have not been
studied extensively in the computer vision field, as they are move-
ments that occur in human interaction with their environment.
Therefore, it is necessary to include perception and knowledge of
the environment within the parameters of the system. The analysis
of human movement is already a complex issue. In fact, accurately
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collecting and analyzing human body movement are very complicat-
ed and difficult. Without even considering human body segmentation
and motion estimation in image sequences, the recognition system
must solve many inherent difficulties that come with gestures.
These difficulties include variability of the signal in time (a gesture's
direction and dynamics vary with each execution, even if made by
the same person), variability of the signal in space (just as a gesture
may vary during each execution, it also varies in each dimension of
space) and temporal segmentation or macro segmentation (to recog-
nize a specific sequence of gestures it is necessary to segment each
sequence temporarily in order to effectively study every individual
gesture). Each human gesture belongs to a particular context. Gesture
execution links to its intrinsic nature (shape, size) and the object's
scope with which people interact as well as its extrinsic characteris-
tics (position and orientation relative to the object in relation to the
operator). Therefore, determining a correct representation adapted
to each type of gesture and a decision process by macro segmentation
as well as recognition of that gesture, constitutes an important focus
of study. To achieve this goal, a multimodal analysis is required to si-
multaneously analyze the reconstruction, monitoring, and recogni-
tion of the hand position, eye tracking and recognition of objects
(estimate the position and search for real objects). This approach is
particularly effective because knowledge of the object in hand during
a gesture allows researchers to better infer gesture recognition of
grasping and manipulation gestures [20,40,30] as well as reduce the
inherent difficulties related to an elevated number of degrees of free-
dom (models of the hand and forearm have 26° of freedom) and
self-occlusion [16].
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In general, the main contribution in this area has been limited to
the external analysis of human movement. We propose building a
model that utilizes the same visual information the user has access
to by capturing said visual field with a camera. The main research ob-
jective is the automatic translation of gestures created by grasping
objects. To that end, it is necessary to identify each kind of movement
made in addition to indicating the object a user wants to grasp. Why
is it necessary to determine this type of movement? One example
of its importance is for people suffering from neurodegenerative
diseases, which cause motor problems and limit movement, who
are greatly hindered in performing grasping tasks. In these cases
motion control is altered, causing tremor, slowness, imprecision, etc.
Even though visual functions may not be affected, the control system
is unable to plan the motion in a normal manner.

This paper proposes recognizing user grasping movements by
fusing the analysis of multiple devices attached to the human body.
The investigation differs from classical methods utilized to recognize
grasping gestures. Generally, most motion recognition methods cap-
ture user actions by tracking body parts from a position in front of
the user. Instead, we propose to capture the scene by utilizing the
user's gaze and grasping movements by exploiting the user perspec-
tive; thus, making it possible to infer the user's action. The system is
composed of (1) an eye-tracker with an integrated camera that cap-
tures a scene similar to the user's field-of-view (FOV) and estimates
the user's gaze position; and (2) a camera placed on the user's wrist
that captures a scene similar to that of the eye-tracker camera (Fig. 1).

The rest of the paper is organized as follows: Section 2 discusses
prior work on human gesture recognition; Section 3 explains the pro-
posed method; Section 4 shows experimental results; and finally,
Section 5 presents the paper's contributions and succinctly describes
various ongoing and future works.

2. Related work

Gesture recognition can be defined as a problem in tracking body
parts over space-time in order to interpret motion behavior as a par-
ticular gesture. Based on the Aggarwal and Cai [3] definition, gesture
recognition requires the performance of three general tasks. First, to
identify human body structure or low-level features such as points,
blobs, 2D contours or 3D-volumes; second, to track human move-
ments using low-level features by matching between consecutive
frames or using the motion itself; and third, to recognize the specific
human action by matching the motion descriptor captured in the
tracking process against the recognition framework. The last step is
considered a higher level task given that the recognition task requires
the classification of varying feature data over time [25]. The problem
of interpreting human gestures is defined as a learning process. In the
training phase, some sequences are used to learn the user's behavior,
labeling each sequence as a particular human gesture. Later, in the
matching phase, unknown test sequences are compared against a
model so as to be classified as a particular gesture. Most approaches
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Fig. 1. User's posture when performing a grasping action
designed to detect human gestures are based on template matching
(e.g. [35,44]) or appearance-based models [48,1]. This section dis-
cusses the current principal approaches to detect human gestures
using computer vision methods. First, a brief introduction to the
main paradigms for motion detection; second, a discussion of the
eye–hand coordination involved in grasping recognition.

2.1. Computer vision methods that analyze human motion

The study of human motion using computer vision methods can
be divided into three main approaches: passive, wearable and pointer
paradigms which are relative to user and camera position. (1) With
the passive approach, the camera is located in a fixed position,
normally in front of the user, meaning the camera's field-of-view
(FOV) remains constant. There are two main scenarios depending
on whether the subject is captured with just one stationary camera
or with multiple cameras from multiple perspectives in correspon-
dence (see recent surveys [52,36]). (2) The wearable approach uses
external devices attached to the human body. The objective is to ob-
tain a continuous representation of the user's environment. At pres-
ent, wearable cameras are offering new ways to increase human–
computer interactions, mainly by allowing the user to move freely
and view any given scene without being constrained by fixed cameras
(e.g. [10,12,24,30]). (3) The pointer approach is based on the idea
where I am looking is what I want. Currently, the device most
employed to obtain a user's gaze is the eye-tracker. The eye-tracker
allows researchers to track eye movements by giving an estimated
position of the user's gaze, in real-time, relative to an image frame,
normally after an initial calibration. The system is composed of two
head-mounted cameras: (i) a camera that shares a similar view as
the user. This camera has almost the exact same field-of-view (FOV)
as the user and therefore answers the first part, what I am looking
at; and (ii) a camera that captures eye movements by means of corneal
reflection; thus covering the position,what I want. In general, this tech-
nology is providing new opportunities to understand visual perception
from a cognitive perspective and to explain the inherent mechanisms
that control eye–hand coordination. However, so far there is no clear
consensus or a unified theory that can explain this process effectively
(see [11] for detailed discussions). Therefore, it is not possible to use a
specific model that explains the underlying procedure of eye–hand
coordination.

Most methods which detect human gestures have been designed to
utilize both passive and wearable approaches. These methods have
proven to be effective in representing the action that takes place in
the scene [13,10,27,24]; unfortunately, they cannot detect grasping
movements because they do not take into account the direction of a
user's gaze. On the other hand, even though the pointer approach has
been designed to predict the user's gaze, it cannot differentiate a grasp-
ing motion unless the user maintains a constant gaze toward an object
for a prolonged period of time. For example, the system proposed by
[41] exploits the human gaze to support cooperative work with robots.
C2 

C1 

Multiple correspondences 

(b)

Head 
camera 

Eye-
tracker  

Micro-
camera 

C2 

C1 
Head 
camera 

Eye-
tracker  

Micro-
camera 

using an eye-tracker and camera beneath the wrist.



862 M. Carrasco, X. Clady / Image and Vision Computing 30 (2012) 860–874
Additional applications have also been designed to help people with
motor difficulties, e.g. [34,37]. The main restriction of the aforemen-
tionedmethods is that eye-trackers are not designed to analyze the tra-
jectory of the hand toward an object because they have no vision of the
hand. To overcome these drawbacks, this investigation develops a
method that uses both wearable and pointer paradigms. The authors
are unaware of any existing works that attempt to exploit eye–hand
coordination by combining these two approaches with the final goal
of predicting hand gestures.

2.2. Eye–hand coordination

Human beings posses a highly developed ability to grasp objects
under many different conditions, taking into account variations in
position, location, structure, motion and orientation. This natural abil-
ity controlled by the human brain is called eye–hand coordination [7].
Normally, a grasping movement is initiated before the hand actually
reaches the desired object. This movement is regulated by the inter-
action of several sensorimotor systems such as the visual, vestibular
and proprioceptive systems working in conjunction with the head,
eye, hand and arm control systems [9,18].

The internal process that controls eye–hand coordination is complex
and results from the multiple sensor-receptor, control and cognitive
systems working in synergy [7,22]. This process is completely different
fromhumanmotion as defined by Adams [2]. Humanmotion is strongly
influenced by the cognitive process, and as a result, when movement
becomes habitual, the cognitive process is used only to correct or
perfect the movement. By contrast, eye–hand coordination requires a
sensory signal mechanism that controls the eye and hand movements
as a single unit. Such coordination demands three main brain tasks
described as follows. Firstly, the brain must solve a geometric transfor-
mation between the internal world, encoded by the retinocentric frame
of reference; and the externalworld, using a body-centered representa-
tion by proprioception [9,15]. Secondly, the brain must develop a plan
to reach an object using body-centered coordinates by comparing
gaze signals with hand coordinates and by estimating the hand motor
difference in relation with the gaze coordinates [8]. Thirdly, the brain
must control hand posture before reaching toward an object taking
into account the size, shape, motion and orientation of the object [39].

For many years researchers have been studying this process trying
to discover the underlying mechanism that controls eye–hand coordi-
nation. However, currently there is not a single theory that explains
this process effectively and in fact, the process is not completely under-
stood, e.g. [21,14]. The controversial question is howmuch information
is utilized in the planning of a hand movement. More precisely, does
human vision rely more on visual information or memory representa-
tions? In the nineties, many researchers supported the idea that only
limited information is acquired across saccades [21,31,4]. Humans
seem to maximize the coordination between eye and handmovements
using visual information continuously instead of a memory representa-
tion to plan their movements [7]. The main reason being that memory
is too old and uncertain even when nothing has changed; in contrast,
visual information is constantly updated. However, recent studies
have shown that people can use both systems simultaneously. Brouwer
and Knill [7] stated that unconsciousmemory is used constantly to plan
hand movements and focus on objects. They show that the brain can
use both sources depending on their relative reliability. If visual infor-
mation is more reliable thanmemory representations, the visual source
seems to dominate. By contrast, when visual information is degraded,
the brain increases the use of memory information to plan handmove-
ments. That explains why people require more time to grasp an object
in a situation of low contrast compared to high contrast conditions [7].

Another important issue concerning eye–hand coordination is
related to gaze fixations. In general, there is a clear consensus that a
gaze is directed at a specific target long before the hand reaches the
object [7,9,22]. Likewise, fixations seem to be stable until the object
has been grasped, when the hand arrives, fixations on the object are
no longer required. As a consequence, the number of saccades around
the object is fairly reduced, increasing the visual information in the
retina [33]. This behavior indicates that fixations have three main fea-
tures. First: task-dependent, differentfixations are needed for performing
different actions based on knowledge and target location [22]. Second:
task-relevant, the sequence of fixations in relevant points allows the
brain to estimate the geometric relationship of the world based on inter-
nal body coordinates [9,26]. Third: memory-dependent, fixations allow
the brain to memorize different spatial positions of objects which can
later be used when planning movements [7].

As stated above, the time needed to acquire a gazefixation is directly
related to the task context. It depends on the degree of complexity re-
quired tomanipulate an object with the hand. Consequently, the period
of time is variable and can fluctuate between 100 ms to 1500 ms, the
general distribution is between 100 ms and 200 ms [22]. On the con-
trary, long fixations are the result of a prolonged actionwith continuous
direction as stated by Land et al. [28]. This important finding is a key
factor in understanding how the visual systemworks. Later, this under-
standing may provide insight into the grasping action process by
increasing the probability of detecting the desired object.

3. Proposed method

The proposed system uses a temporal slide window (TSW) approach.
Thus, by means of a pattern recognition scheme, it is possible to classify
each motion pattern as a particular grasping movement. Nonetheless,
there are two problems associated with this scheme. First, it is too com-
plex to extract a good feature pattern of each action. Second, a grasping
movement can be too quick and therefore a normal video camera (nor-
mally at 30 fps) is not able to locate correspondences between the first
and last frames properly, causing difficulties when detecting a motion
pattern. In order to avoid the mentioned disadvantages, we propose
a new scheme that makes use of a combination of multiple frames in
conjunction with an HMM process to predict grasping movements in
addition to the desired object. The methodology for this system is com-
posed of twomain steps. Firstly, the proposedmethod only uses the visu-
al information obtained from a camera beneath the user's wrist to
recognize graspingmovements. Secondly, the above information is com-
bined with an object recognition methodology and an eye-movement
analysis to differentiate fixations from grasping movements. Therefore,
this method is capable of detecting when a user wants to grasp an object
as well as recognizing the actual desired object. Experiments were
conducted in two stages according to each phase of the methodology.
A group of objects were placed on a fixed table in similar conditions to
classical therapy protocol [51].

This section describes the proposed methodology to predict grasping
actions by utilizing eye–hand coordination. As stated before, there are dif-
ferent approaches to detecting human gestures based on a combination
of one, or multiple cameras, in addition to the camera's position relative
to the user. The main idea consists of capturing two viewpoints of the
same spatial domain, without external markers on objects, in order to
infer grasping movements. To achieve this goal, it is necessary to detect
a grasping action from the moment a movement has been initiated.
According to Tamura et al. [49], when the speed of the hand movement
is faster than 50 cm/s, the direction of the hand toward the target is stable
and almost remains the same. For this reason, a grasping movement
could be detected before the hand reaches the desired object.

Our analysis has been separated in two main steps. First, only the
information provided by the camera beneath the user's wrist is used.
The idea is to detect grasping actions using an HMM framework. Sec-
ondly, predicting gesture recognition requires a second HMM that
combines grasping movements with the information provided by an
eye-tracker. When a user wants to grasp an object, the gaze and
hand trajectory remain almost stable [49,11]. Therefore, correspon-
dences increase because there are more correlated areas over time.
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Section 3.2) and the SURF features, indicators shall be called the motion features.
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This information is used later to differentiate fixations and grasping
actions. Below is the proposed method's approach to detecting both
hand posture recognition and grasping action recognition. A general
configuration is presented in Fig. 2.

3.1. Hand motion recognition

Themain problemwhen dealingwith hand gesture recognition is de-
veloping a robust motion pattern. To achieve this goal, a point-to-point
correspondence analysis is performed. Here a robust invariant descriptor
called SURF is used [6]; mainly because of its robustness and speed
against variations in scale and rotations. Experimentally, even though
this method is efficient for objects in everyday life as well as objects
used in this study, the number of corresponding points detected is low
and their distribution is not uniform throughout the image. In addition,
the distance between objects and the camera is limited and the move-
ment happens very quickly [49]. In these conditions, classical methods
for camera movement estimation are not well suited because they sup-
pose a priori scenemodel or a large set of resilient points. Themain objec-
tive is not to estimate the parameters of the movement, but to infer its
direction and in particular, to estimate the probability that the current
motion is a graspingmovement. The proposedmethod is based on sever-
al cues related to observed motions and extracted from a robust motion
pattern based on Temporal SlideWindows (TSW). These cues are provid-
ed to an HMM framework in order to recognize four normal hand
gestures which are reach, retreat, translation and rotation movements.
In natural grasping gestures (without obstacles), these movements are
not completely mixed.

3.1.1. Movement representation using a TSW approach
Hand gesture recognition is performed using the appearance-base

model. This configuration is better illustrated in Fig. 3. As observed
in the sequence, it is possible to infer that the trajectory remains
constant when the user initiates a movement toward a specific object.
Accordingly, all objects in the scene start to disappear from the user's
FOV until the hand has reached the required object. Conversely, if hand
movements are stochastic, there is a reduced probability that the user is
performing a grasping movement because the motion-descriptor does
not show an approach pattern. The previous statement is the key point
in our gesture recognition framework, however, the current problem is
how to accurately build a robust motion pattern. To achieve this goal, a
tracking analysis is performed to resolve the correspondence problem.

Most tracking algorithms founded on appearance-base models
compute an object's trajectory by using a displacement difference
between multiple frames. Those methods are well suited when the
object motion is smooth and without abrupt changes, as with exam-
ple methods based on optical flow estimation [5]. Considering the
current investigation, the hand motion is particularly fast when the
user is performing a grasping action or conversely, it is too stochastic
in other cases. For this reason, it is important to analyze the motion
displacement between intermediate frames. Similar to the spatiotem-
poral methods described by Shechtman and Irani [44], the proposed
method uses a temporal slide window (TSW) approach extracted
along video sequences. As suggested by Shechtman and Irani [44],
each human action induces a particular pattern despite differences
in illumination, background, color or texture. The idea is to relate
multiple corresponding points in order to estimate global motion fea-
tures or indicators1 on each TSW, which corresponds to the I)↦V)
steps in Fig. 2.

3.1.1.1. Feature matching. The first step is to compute invariant
interest-points using the SURF algorithm [6]. This task is performed
for each δ-frames contained on a TSW, where δ∈{1,…,5}. Assuming
that the features extracted by SURF are more resilient to long varia-
tions, it is possible to relate multiple corresponding points along
time with more probability. For instance, let p1

j =[x1j ,y1j ,1]⊤ be the
position of interest point j-th in time t=1 stored in homogenous
coordinates. If this interest point is corresponding with point pn

j in
time t=n it must have a strong similarity between their features.
Likewise, after δ-frames, point pi

j is corresponding with pn
j using the

same similarity metric, where i∈{1,…,n}.
Secondly, after extracting interest points for δ-frames, the system

attempts to relate them. Specifically, it tries to find a vector that
relates point j-th pi

j↦pn
j , for all i∈{1,…,n}. Here, the key idea is to

relate multiple corresponding points with respect to the set of points
extracted from the last frame. Even if some frames within this relation
do not exist, it is not relevant as long as a minimum number of corre-
spondences is established. As a result, the motion complexity caused
by the inter-frame approach is reduced [43], additionally this also as-
sures a single correspondence between multiple frames (Fig. 4).

The feature matching procedure to relate two points of interest is
as follows. Firstly, it is necessary to calculate the distance of a feature
vector fij of point j-th in time t= i against all feature vectors extracted
in time t=n as

F j
i;n ωð Þ ¼ arccos

fji⋅f
ω
n

‖fji‖‖f
ω
n ‖

 !
for all ω∈Ω; ð1Þ

where Ω={1,…,s} is the set of interest points detected in time t=n,
and Fi,nj is a vector containing the angle-value for each point j with
regard to point ω. Although the cosine similarity is useful to find
the most similar vector by seeking the lowest angle-value, in many
cases this correspondence is incorrect because the corresponding
point does not exist in the last frame. To avoid this error, it is neces-
sary to employ a procedure to reinforce correct matching. Secondly,
the two lowest values of vector Fi,nj are extracted and defined as

dj; j′ ¼ F j
i;n j′
� �

and dj; j″ ¼ F j
i;n j″
� �

; ð2Þ



(b)(a)

Fig. 4. Schematic view of point correspondence in time-space. (a) Corresponding points in 3D time-space volume. (b) Corresponding points in 2D coordinates.

Hand approach sequence 

 t1  t i  tn 
time 

Fig. 3. Hand approach sequence using a camera beneath the user's wrist. In time t1 multiple objects are detected, later, in time ti and tn the field-of-view (FOV) is almost filled due to
the proximity between the hand and object.
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where dj, j′ is the first lowest angle-value, and dj, j″ is the second lowest
angle-value of Fi,nj , respectively. Therefore, the link between pi

j↦pn
j′

is established if the constraint

dj; j′

dj; j″
br where r∈ 0;1½ �; ð3Þ

is fulfilled. Parameter r is the relative ratio between the best two feature
candidates j′ and j″ in order to reduce the number of mismatches and
retain the maximum amount of correct matches.2 In other words, this
criterion assures that point j-th is matched with its nearest neighbor
only if much closer than the second neighbor. Note that point j′ refers
to an unknown point in time t=n; nonetheless, in the case of a correct
match j′= j, since it is the same point between time t={1,…, i,…,n}.
This matching criterion is known as the Nearest-Neighbor with
Distance Ratio (NNDR) [29]. In general, the NNDR criterion reduces
the number of corresponding points when there are noise-points
and when a corresponding point does not exist. This last fault
normally occurs when there is a rapid motion sequence, as often
happens in the problem currently being discussed. According to Sidibe
et al. [45], although the NNDR criterion does not have the best perfor-
mance, it has been selected because it is less expensive computationally
(Fig. 4).

3.1.1.2. Vectorial movement. Applying the same procedure on other
images of the same TSW, it is possible to build a global vector map
that converges on point pn

j . In order to establish a motion field
2 According to Lowe [29] the r value used is fixed at 0.7.
along this time, several vectors of the same point are required. Name-
ly, let qi,n

j with i∈{1,…,n−δ} be a homogenous vector that relates
points pi

j↦pn
j defined as

q j
i;n ¼ p j

i � p j
n ¼ xj

i ; y
j
i ;1

h i
� xj

n; y
j
n;1

h i
:

The qi,n
j, j′ vector is established in time t={i,…,n} only for point j-th.3

However, several vectors of the same point are required to establish a
motion field along time. For this, it is necessary to define the general
motion of multiple vectors that arrive at point pn

j as

Q j
1↦n ¼ q j

1;…;q j
i ;…;q j

n−δ

h i⊤
:

Matrix Q j
1↦n defines the motion field for point j-th for all frames

until time t=n (for each δ-frames). Nevertheless, this procedure
does not ensure that in every δ-frames there is a correspondence
because of high geometric and photometric distortions or partial
occlusions that could be present in some frames. To assure that themo-
tion field is correct, parameter ρ is defined as the minimum number of
rows in matrix Q j

1↦n where inliers≥ρ is fulfilled. Conversely, if this last
constraint is not fulfilled, the motion field for that point is discarded.
The next step is to derive only one vector, that represents the motion
of point j-th, along time. For this reason, the angle of feature point j-th
is mapped along all inliers-frames as

F j
1↦n ¼ F j

1;n;…; F j
i;n;…; F j

n−δ;n

h i

3 For simplicity, the notation q i,n

j, j′ was changed to q i
j, assuming a correct matching

between j-th and j′− th and in time t={i,…,n}.
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where F j
1↦n is an (1× inlier) angle vector of the SURF feature vector

extracted for each δ-frames for point j-th. In other words, each angle
F j
i;n weighs the relative significance between the features of points

p j
i↦p j

n. Thus, the smaller the angle between the two vectors, the stron-
ger the relation of the same point. Conversely, when the angle-value is
maximal, it can be considered noise. Based on such observation, this
investigation proposes to represent each angle-value as a weight vector
after a linear transformation. Therefore, vector Fj1↦n is transformed to
vector F̃ j1↦n, used for weighting each motion vector such that

F̃ j
1↦n ¼ 1− αF j

1↦n

max F j
1↦n

� � : ð4Þ

Experimentally, α was fixed at 0.98 to use all vectors mapped in
F j
1↦n. Nonetheless, vector F̃

j
1↦n is not correctly scaled. To determine

a correct scale measure, N j
1↦n is computed as

N j
1↦n ¼ F̃ j1↦n

∑inlier
i¼1 F̃ j1↦n ið Þ

; ð5Þ

where ∑inlier
i¼1 N j

1↦n ið Þ ¼ 1. The resulting vector N j
1↦n gives a correct

measure of each angle value by taking into account the relative signif-
icance between the angles contained in F j

1↦n. Finally, the global vector
of point j-th is computed as the vector

v j
1↦n ¼ Q j⊤

1↦nN
j⊤
1↦n; ð6Þ

where v j
1↦n is a (1×3) that maps all Q j

1↦n kð Þ vectors into a single one
by giving more value to vectors with more similarity, based on the
weight feature vector encoded inN j

1↦n. More precisely,v j
1↦n is a direc-

tional vector of point j-th, as shown in Fig. 5a.
Additionally, we compute the normal directional vector with the

aim of detecting rotational movements, as we shall see later. For
this, let q⊥

j
i;n be the normal vector between points p j

i↦p j′
n established

between time t={i,…,n} for point j-th, defined as

q⊥
j; j′

i;n ¼
xj
i−xj′

n

y j
i−yj′

n

x j′

n ⋅ xj′

n−xj
i

� �
þ yj′

n ⋅ yj′

n−yj
i

� �
2
664

3
775: ð7Þ
(a)

Intersection 
point 

Global vector 
for the point  j-th

Fig. 5. (a) Multiple lines converge at one point when a reach-to-grasp movement is performed. (
Based on this, let Q⊥
j
1↦n be the matrix of the normal motion field

for point j-th, in a manner similar to Eq. (6). Therefore the normal
global vector is as follows

v⊥
j
1↦n ¼ Q⊥

j⊤
1↦nN

j⊤
1↦n: ð8Þ

Note that v⊥
j
1↦n was computed in the same way as v j

1↦n, however
in this case the Q⊥

j
1↦n matrix is composed of an array of normal

vectors.

3.1.1.3. Intersection point. For the sake of simplicity, the last procedure
considered the motion of point j-th. Now the problem of estimating
the intersection point of multiple corresponding points is discussed.
Suppose there are determined multiple vectors vΘ1↦n, where Θ=
{1,…, j,…,k} is the set of interest points detected in time t={1,…,n}
and k is the last point in correspondence, as shown in Fig. 5a. For
this, let AΘ

1↦n be a (k×3) matrix that encodes all motion vectors as

AΘ
1↦n ¼

v11↦n
⋮

v j
1↦n
⋮

vk1↦n

2
66664

3
77775 ¼

a1 b1 c1
⋮ ⋮ ⋮
aj bj cj
⋮ ⋮ ⋮
ak bk ck

2
66664

3
77775: ð9Þ

The next step is to estimate the central point using the vectors
contained in AΘ

1↦n. Experimentally, when a grasping movement
has been initiated, multiple vectors intersect a common point called the
intersection point. This situation is better illustrated in Fig. 5. To estimate
the position of the unknown intersection point, a non-homogeneous sys-
tem of linear equations is formulated. This is described as follows

a1 b1 c1
⋮ ⋮ ⋮
aj bj cj
⋮ ⋮ ⋮
ak bk ck
0 0 1

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
H

x
y
1

2
4
3
5 ¼

0
⋮
0
⋮
0
1

2
6666664

3
7777775

|fflffl{zfflffl}
b

: ð10Þ

Changing the notation in matrix terms, Eq. (10) can be expressed as

Hm ¼ b;
Movement analysis

(b)

Example for j-th point 

Weighted  
initial point  

b) Once a central point is established, a movement analysis toward that point is performed.



4 Estimated as p j
1↦n ¼ P j⊤

1↦nN
j⊤
1↦n .

(b)(a)

Fig. 6. Analysis of multiple points. (a) Motion of each initial and final trajectory points. (b) Distance to the intersection point.
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where H is an overdetermined matrix of AΘ
1↦n vectors; because k≥ρ;

m ¼ x; y;1½ �⊤ is the vector of unknown (x,y), and b ¼ 0;…;1½ �⊤ is the
vector of the right hand side solution of the linear system. Since the in-
tersection of vectors does not have a unique intersection point, here we
aim to find a vectorm̂ such that ∥Hm−b∥ is minimum. A trivial solution
to this problem is solved by means of the Least Square (LS)-solution,
that is

m̂ ¼ H⊤H
� �−1

H⊤b:

Nevertheless, if the H⊤H product is ill-conditioned, the estimated
LS amplifies the errors, giving an inaccurate position of the intersec-
tion point. Hence, we use an orthogonal solution because it is numer-
ically more stable. In particular, we use the QR transformation [23].
The QR decomposition applied to the H matrix generates an orthogo-
nal decomposition in terms of an orthogonal matrix Q and the upper
triangular matrix R such as H ¼ QR. Therefore, the solution for the
nonhomogeneous system, using the QR transformation is

m̂ ¼ R−1 Q⊤b
� �

: ð11Þ

Finally, since m̂ ¼ m̂1; m̂2; m̂3½ � is in homogenous coordinates,
the intersection point defined in the (x,y)-plane is m̂x;y ¼
m̂1=m̂3; m̂2=m̂3ð Þ. Once the intersection point is established, we seek
to compute the normal intersection point defined as the intersection
of all normal vectors v⊥Θ

1↦n. Based on the above procedure, from
Eqs. (10) to (11), first we define the A⊥

Θ
1↦n matrix of all normal

vectors contained in Θ as

A⊥
Θ
1↦n ¼

v⊥
1
1↦n
⋮

v⊥
j
1↦n
⋮

v⊥
k
1↦n

2
66664

3
77775: ð12Þ

Then, changing the matrix terms notation, the problem of estimat-
ing the normal intersection point can be expressed as

H′m⊥ ¼ b′
; ð13Þ

wherem⊥ is a non-homogenous vector that encodes the intersection
point of normal vectors in correspondence. Using the QR transformation
applied to theH′, matrix such asH′ ¼ Q ′R′, the normal intersection point
is defined as follows,

m̂⊥ ¼ R′−1
Q ′⊤b′
� �

: ð14Þ

3.1.1.4. Extracted indicators. Below is an explanation of the eight
motion indicators proposed to predict different hand movements.

3.1.1.4.1. Grasp motion. The first two indicators proposed are related
to grasping movements. In general, a graspingmovement can be split up
into two different events. Reach: when the hand is moving toward an
object; and retreat: when the hand is moving backward away from an
object. Whichever movement is performed, there will be an intersection
point m̂ contained in the TSW. Here, a simple procedure is proposed to
infer whether the hand is reaching toward an object or not. Firstly, let
P j
1↦n be a (inliers×3) matrix representing the 2D position in time t=

{1,…,n} for each δ-frames; computed in the same way as matrix Q j
1↦n

P j
1↦n ¼

p j
1
⋮
p j
i
⋮

p j
n−δ

2
66664

3
77775: ð15Þ

Then, it is necessary to re-map the motion field by taking into
account the scale matrix N j⊤

1↦n. p
j
1↦n is defined as a weighted mean

position4 of vector v j
1↦n (see Fig. 6a). Extending this procedure to all

Θ-points, let pΘ
1↦n be the motion of each point in the TSW in

[1,…,n], and let pΘ
n be the final position of each point defined as

pΘ
1↦n ¼

p1
1↦n
⋮

p j
1↦n
⋮

pk
1↦n

2
66664

3
77775; and pΘ

n ¼

p1
n
⋮
p j
n
⋮
pk
n

2
66664

3
77775: ð16Þ

Since vector pΘ
1↦n codes the initial weighted position, let d1,m

be the Euclidean distance of each vector pΘ
1↦n in relation with inter-

section point m̂, and let dn,m be the Euclidean distance of each final
positionpΘ

n in relation with the same intersection point m̂ as d1;m jð Þ ¼
∥pΘ

1↦n jð Þ−m̂∥ and dn;m jð Þ ¼ ∥pΘ
n jð Þ−m̂∥ (see Fig. 6b). Since the esti-

mated position of the initial, final and intersection points can be
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known, the next step is to determine whether the movement is
reaching or retreating. Based on these values, function v(j) is defined
as the number of nearest points to the intersection point as follows

v jð Þ ¼ 1 if dn;m jð Þ≥d1;m jð Þ
0 otherwise:

�

The resultant function value can be used to define two parameters
(g1,g2) which are mean g1=μ(v) and variance g2=σ2(v). Indeed,
g1↦1 when movement is reaching and conversely, g1↦0 when
movement is retreating. To confirm this prediction, variance (σ2)
should be low.

3.1.1.4.2. Rotational motion. The rotational motion indicator gives a
temporal variation of each point in correspondence. The main idea is to
capture rotational movements independent of turn direction, and thus,
compute the angle velocity of each point. Firstly, suppose that the link be-
tween p j

i↦p j
n and p j

λ↦p j
n exists. Therefore, sij and sλ

j are two consecutive
slopes of point j-th separated by λ-frames respectively defined as

sji ¼
yj
i−yj

n

xj
i−xj

n

; s jλ ¼ yj
λ−yj

n

x j
λ−xj

n

:

Since both points are signaling to the last point p j
n in time t=n, by

transitivity, this also implies that p j
i↦p j

λ, where tλ> ti. Therefore, the
angle between these consecutive slopes is

θ j
i;λ ¼ arctan

s ji−s jλ
1þ s jis

j
λ

�����
�����:

Based on this result, the angular velocity ω is calculated between
p j
i and p j

λ so as to compute the motion variation along time, defined

asω j
i;λ ¼ △θ j

i;λ
riangleti;λ

, for all i∈{1,…, inliers}, where△ ti,λ is the time differ-

ence between two consecutive frames (see Fig. 7a). Combining the

above value with the Euclidean distance between points pi
j and p j

λ,
the third indicator is as follows

g3 ¼
∑k

j¼1∑inlier
i¼1 σ2 ω j

i;λ

� �
∑k

j¼1∑inlier
i¼1 σ2 ‖p j

i−p j
λ‖

� � : ð17Þ

The above indicator is able to distinguish rotational and translational
movements. In the first case g3>1 and in the second case g3↦0.
Angle variation

(a)

Fig. 7. (a) Temporal angle variation. (b) Global area motion between wei
3.1.1.4.3. Rotational area. The rotational area is formed by the trian-
gle composed of intersection point m̂, the weighted mean position
p j
1↦n and the final end position p j

n for each j-point (see Fig. 7b). This
indicator allows the system to estimate whether the motion is mov-
ing toward an object or not. The area variation of multiple points
along the TSW is as follows

g4 ¼ 1
2k

Xk
j¼1

d1;m jð Þdn;m jð Þ sin ϕ j
1;n

� �
ð18Þ

where ϕ1↦n
j is the angle centered at m̂ and d1,m( j) and dn,m( j) are the

adjacent segments.
3.1.1.4.4. Rotational normal area. When the movement is purely

rotational, the proposed method suggests a similar indicator as in
the above case; however, here the normal intersection point m̂⊥ is
utilized and defined as follows

g5 ¼ 1
2k

Xk
j¼1

d1;m⊥
jð Þdn;m⊥

jð Þ sin ρ j
1;n

� �
ð19Þ

whereρ1,n
j is the angle centered atm̂⊥ (see Fig. 9). The above value is high

whenmotion is not rotational because the intersection of normal vectors
does not exist. However, when motion starts to be rotational there is a
point m̂⊥ that intersects all normal vectors v⊥

Θ
1↦n. Consequently, all

points have the same spin angle and a similar variation. As a consequence
of previous results, it is possible to obtain two angle variations. Combin-
ing angles ρ1,n

j and ϕ1,n
j in the following indicator

g6 ¼ ∑k
j¼1ϕ

j
1;n

∑k
j¼1ρ

j
1;n

ð20Þ

allows the system to obtain a variation ofmotion over time. For rotational
movements g6 tends to be constant. For translation movements, g6 tends
to be high and for reaching and retreating movements it increases or
decreases respectively.

3.1.1.4.5. Parallel angles. Parallel angles give the relative variation
between angles of each weighted mean position and its final end
position. The key point of this indicator is to detect only translational
movements, independently of angle direction andmovement orienta-
tion. The seventh indicator is defined as follows

g7 ¼
∑k

j¼1 ‖pj
1↦n−pj

n‖
� �
kσ2 ψð Þ ð21Þ
Global area motion

(b)

ghted mean position and last point contained in each time-window.



Translational variation

(b)(a)

Fig. 8. (a) Different angles are found when motion is rotational. (b) Similar angles are found when the motion is purely translational.

(b)(a)

Fig. 9. Analysis of multiple points. (a) Motion of each initial and final trajectory points with respect to the intersection point. (b) Distance to the normal intersection point.
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where ψ is the angle of absolute vector
→
pj
1↦np

j
n . In general g7↦0 when

the movement is rotational and g7↦∞ when the movement is purely
translational (Fig. 8).

3.1.1.4.6. Acceleration. As mentioned earlier, human gestures
are composed of continuous acceleration and deceleration phases.
The proposed indicator is designed to detect these variations as fol-
lows

g8 ¼ σ2 axð Þ
σ2 axð Þ þ σ2 ay

� � ð22Þ

where ax
j and ay

j are temporal accelerations with respect to point pnj

by taking into account the temporal difference ti,λ for each i-frame
contained in each TSW.

3.1.1.4.7. Indicator vector. In the previous steps eight indicators
were proposed that encode different motion features for each TSW.
This vector is used as an input for an HMM framework. For simplicity,
the above analysis has considered a TSW in time t={1,…,n}. Thus,
the first feature vector o1 is composed as follows

o1≡o1↦n ¼ g1; g2; g3; g4; g5; g6; g7; g8½ �⊤ ð23Þ
nevertheless, to infer user intention it is necessary to obtain multiple
TSW. Recall that each TSW is composed of a sequence of δ frames, as
shown in Fig. 2. Therefore, a sequence is represented by multiple
TSWs, each one composed of eight features

O ¼ o1;o2;…;oT½ � ð24Þ

where T is the total frame number of the video sequence and O is the
observed symbol sequence.

3.1.1.5. Training HMM for recognition. Below, the principal component
of an HMM based system used to recognize user intention is briefly
described. HMM is a type of stochastic signal model composed by a
Markov Chain whose states cannot be observed directly, but can be
observed through the sequence of observations. Currently, HMMs
have been employed in a wide range of applications, especially when
it is necessary to deal with time-series that have spatial temporal vari-
abilities, for example, intention and gesture recognition [32,52,36].

More specifically, HMM is composed of a number of N-states
{S1,S2,…,SN} connected by transitions, where each transition has an
associated probability, defined by matrix A; an emission distribution
probability, or the probability of emitting an observation given a
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state, defined by matrix B; and an initial state distribution π={πi}.
Using a compact notation, an HMM is fully specified by the triplet
λ=(A,B,π) where

• A={aij} where aij=Pr(qt+1=Sj|qt=Si),1≤ i, j≤N is the state tran-
sition probability distribution and qt represents the state at time t.

• B ¼ b1 oð Þ; b2 oð Þ;…; bN oð Þf g correspond to the observation probabili-
ty for each state. In the proposed method, observations are modeled
with a Gaussian distribution bj Oð Þ ¼ N o; μ j; gmaj

� �
where o is the

feature vector extracted in the last step.
• Π≡{π1,π2,…,πN} where πi=p(q1=Si),1≤ i≤N is the initial state
distribution.

Based on the above parameters, the problemwe face is categorizing
each class defined as a particular hand movement. First, it is necessary
to create an HMM for each category using the well known Forward–
Backward algorithm [38] in order to find the best parameters for each
HMM. This is a generalized Expectation–Maximization (EM) algorithm
by maximizing the probability of observation sequences given each
HMM model for all training sequences. Once the HMM parameters are
established, the goal is to recognize an observed symbol sequence as a
particular hand gesture. Suppose that each λi where i=1,…,C, is a
model parameter defined for i-class on C classes, where C is the number
of movements detected by the system. Given a sequence of observa-
tions O, it is possible to calculate p O λij Þð for each HMM λi and then
choose the class with maximum probability as

class ¼ arg max
i

p O λij Þð Þ:ð ð25Þ
3.2. Grasp intention recognition

This section describes how the user's gaze, as well as hand gesture
recognition, improves the detection of grasping actions. Below, the
SURF 
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Offline process

Feature reduction I 
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H

Temporal Slide Window (TSW) 
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recongnition
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Fig. 10. Proposed recognition m
general process is described using an eye-tracker and camera placed
beneath the user's wrist (Fig. 10).

3.2.1. Grasp features
This process has been developed using grasp features or new indi-

cators combined with previous results in a new HMM framework.

3.2.1.1. Saccade detection. Various studies have shown that fixations
are stable directly before the user initiates a grasping movement
[22]. Conversely, saccade movements do not allow the gaze to remain
in a stable position. Since eye-trackers provide the (x,y) position of
the eye's gaze, it is possible to compute the velocity rate vx(i) and
vy(i) of each TSW for all i=1,…,n. Based on the above information,
the proposed method suggests the following feature to quantify the
global velocity as

h1 ¼ σ vxð Þ þ σ vy
� �

:

Normally this feature has a low value when fixations are stable
and a high value for saccade movements.

3.2.1.2. Features reduction. The main objective of this task is to find
more resilient features over time in order to recognize the desired
object in a video sequence. Here the proposed method is similar to
the method put forth by [47] to build a visual vocabulary. The key
idea is that few descriptors can be seen many times over the
video-sequence. Accordingly, more resilient features are used later to
classify an object against a new video sequence. In general, there are
manyways to create a codebook [19]. Here a simplemethod to compute
the codebook is implemented. First, random frames are extracted from
a video sequence that captures the user's gaze. Second, each feature is
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5 An ASL Eye-Trac 6 was employed to capture user gaze.

cup bottle mug box deodorant 

Fig. 11. Rotational motion sequence for objects used in the experiments.
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classified as part of an object. Third, all other feature space is explored
using the Mahalanobis distance in order to create a codebook using a
Vector Quantization (VQ) algorithm. Once the VQ features of each ob-
ject are extracted, matrix Fn is defined as the codebook of n-objects of
interest.

3.2.1.3. Object recognition. After creating a codebook for all objects
contained in the scene, new features are extracted from another
video sequence containing all previously analyzed objects. The key
point is that some features have properties similar to a specific object
contained in the codebook. To increase the probability of correctly
classifying an object, several features contained in the same TSW
have been extracted.

Here the cosine angle distance function is used tomeasurematching
between an unknown feature vector and a known feature vector
contained in the codebook. Considering a function named class, which
provides the class of the nearest known feature in the codebook,
the system computes Sj ¼ ∑i class f i;Dnð Þ ¼¼ jð Þ, for all i={1,…,p},
where fi is an unknown feature vector extracted from the camera's
video sequence (this camera is attached in the user's head); p is the
number of vectors contained in one TSW, j is the number associated
with an object and Dn is the codebook containing an array of feature
vectors. Then h2 ¼ maxj Sð Þ denotes the recognized object.

3.2.1.4. Hand prediction. In the previous section, a set of features to
detect hand intention based on an HMM system was examined. Nor-
mally the outcome of this process is defined by choosing the maximal
class as class ¼ argmaxi p O Λ ij Þð Þð . However, in some situations the
maximal posterior probability could be incorrect when the probabili-
ty ratio between multiple classes is low. For this reason the outcome
probability of each class is used, given hiþ2 ¼ p O Λ ij Þð , for i=1,…,4,
wherep O Λ ij Þð is the probability to have detected the i action in that
TSW.

3.2.2. HMM for recognition
Six indicators have been defined in the steps above. These features

have been designed to detect grasping movements using an HMM as
shown below. The main reason for combining information about
hand intention, eye position and object stability is when there is a
time-delay, fixations are high, the object is always the same in the
FOV and the hand motion is stable moving toward an object. In the
same way as previously described, a new feature vector contained
in a TSW is defined as o1≡o1↦n ¼ h1; h2;h3;h4;h5; h6½ �⊤, where o1 is
defined between time t=1,…,n for the first temporal slide window.
Finally the observed symbol sequence is defined asO ¼ o1;o2;…;oT½ �.

4. Experimental results

This section presents the results of two experiments carried out
with (i) a camera beneath a user's wrist and (ii) an eye-tracker5 on
the proposed framework.

In the first experiment, the results of an HMM framework are de-
scribed in order to perform a motion prediction, without markers on
objects, in five different objects (Fig. 11). In the second experiment,
hand motion prediction is combined with the user's gaze position
(captured by an eye-tracker) in order to predict grasping movements
and detect the desired object.

4.1. Experiment 1

The goal of the first experiment is to evaluate the performance of the
proposed eight features in correctly predicting each grasping move-
ment. An example of the video sequence is shown in Fig. 12. At this
stage, five video sequences at 30 fps digitized into 320×200 pixel
with 256 gray-level images were employed and from this, 7131 TSWs
(classified manually) of 21,544 frames using multiple objects were an-
alyzed, as shown in Fig. 12. In the following experiments, we create
multiple HMMs from a unique training object. Specifically, we used
1466 TSWs obtained from a bottle without markers on the surface.
The above setwas separated into ten blocks in order to evaluate the per-
formance of each HMM. It this important to stress that this object was
not used in the performance evaluation later. Thus, we expect to have
real-life accuracy given that the objects used to evaluate the algorithm
were not used to build each HMM.

In our experiments each TSWused a combination of non-consecutive
four frames intercalated by three inter-frames (i.e. δ=3) (e.g. TSW1 uses
frames in time t={1,4,7,11}, TSW2 uses frames in time t={4,7,11,14}
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Fig. 12. Real image sequence with one object performing four actions (a) reach, (b) retreat, (c) linear and (d) rotary movements.
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and so on).We tested additional configurations but the best suited for our
experiments was δ=3 mainly because it utilizes enough information to
capture hand motion flows. To evaluate the performance, an action is
considered correct if the motion contained on that TSW was predicted
correctly. Additionally, the system must be independent of the objects
contained in the scene, as was explained before. In general, the perfor-
mance of an HMM varies according to the data used for testing. Keep in
mind that our aim is to evaluate the performance of objects not used dur-
ing the HMM training. For this reason each HMMwas tested on five ob-
jects with users performing each particular action with one object at a
time. These objects are a cup, bottle, mug,6 box, and a stick of deodorant.

Fig. 13 shows the average performance of ten HMMs using five dif-
ferent objects (Fig. 11). It is possible to observe an average perfor-
mance7 of F-Score=0.85. In relation to grasping movements, the
reach action had a lower performance because it is normally
classified incorrectly as a rotary movement. On the contrary, the
retreating action had, on average, the best performance which was
near 90%. Fig. 14a and b reveals that performance varies according
to the object being analyzed. In relation to object performance, the
bottle had the lowest performance because the SURF algorithm was
unable to detect a large number of descriptors. Fewer descriptors do
6 Different from the training phase.
7 F-Score=2(precision∗recall)/(precision+recall).
not allow for a robust TSW. On the other hand, the mug had the
best performance given that a large number of descriptors were
used to build robust features, as shown in Fig. 14b.

In these experiments the best HMM generated was used with the
cross validation method. For this task the best performance of each
action was selected using as criteria the best F-Score and the best
True Positive (TP) rate. The results show that it is possible to increase
the performance by 2% when using the best combination of HMMs
with the F-Score and by 4% with the best combination of TP, as
shown in Fig. 14b–c.

4.2. Experiment 2

The main objective of the second experiment is to evaluate factors
influencing the performance of the algorithm. Through information
garnered in past experiments, we use the best HMM algorithm as a
base configuration, which in this case corresponds to “hmm best
TP”. At this point, we evaluate the algorithm's performance analyzing
the five objects used in the experiment (Fig. 11).

Consistent with previous results, we note that performance varies
according to which object is used (Fig. 15). Out of the set of objects
used in the experiment, the bottle and deodorant generated the worst
results. From these findings we conclude that the algorithm is not par-
ticularly robust when detectingmovements where acceleration sharply



Fig. 16. Declining image quality implies a deteriorating descriptor set.
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Fig. 14. (a) Average performance for each action using all HMMs. (b) Average perfor-
mance for all actions on each object using three HMM parameters. (c) Average perfor-
mance for all objects on each action using three HMM parameters.
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increases (or decreases). This implies that acceleration directly affects
correspondence, either by generating incomplete correspondence
and/or incorrect correspondences through time (Fig. 16). On the con-
trary, as movement acceleration decreases, the number of matches
over time increases, independent of the specific movement and object.
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Fig. 15. HMM performance with the best HMM configuration.
Thus, the algorithm obtains a higher performance. These results are
consistent with objects that have the best performance (mug, box),
given that they contain a greater number of matches due to increased
surface points of interest.

When performing a hand movement (either a grasping, rotational
or translational motion), accelerations and decelerations are naturally
generated from the arm movement. The effect of this motion on a
frame is evidenced by the linear degradation of the image (Fig. 16).
Although the algorithm used to perform inter-matching is invariable
to rotation, scaling and translation [6], it is not invariable to linear
degradations. Therefore, the majority of the correspondences are
incorrect which results in the degradation of not only descriptors
extraction, but also the final classification algorithm. One way to
avoid this effect may be through increasing the number of frames
per second, or through applying a linear restoration filter; however,
this would increase the computational cost. An increased amount of
frames necessarily implies a lower level of degradation, which in
turn would result in a greater number of correspondences in each
temporal block.
4.3. Experiment 3

The goal of the third experiment is to evaluate the performance of
the combination of grasping movements with the user gaze position,
as described in Section 3.2. As stated below, when a user performs a
grasping movement toward an object there is a delay in which he/
she acquires the object in his FOV. In this period there are fixations
around the object at one or multiple points. Only after that, he/she
can move his hand toward the desired object. In our experiments
we assume that an object is always the same in both views only
when a grasping movement has been initiated. The main reason
being is that it is always necessary to carry out fixations before grasp-
ing an object, as was described before. Combining the user's gaze and
hand movements allows us to increase the probability of predicting a
grasping movement. Generally the hand camera and the head camera
are not pointing at the same object all the time. In fact, the grasping
movement can be detected only for a small fraction of time. That is
why this task is very complex. An example of this situation is illustrat-
ed in Fig. 17. As we can see, when a grasping movement has been ini-
tiated, both views share some part of the object. Although in some
cases very little information is shared, it is not relevant as long as
we can predict motion with the camera attached to the wrist and de-
tect the desired object with the camera attached to the user's head.
Additionally, the main reason for using TSWs is that they allow us
to collect information about the object even if it is completely occlud-
ed for a small period.

To evaluate performance, a synchronized video using both the
eye-tracker and the camera attached to the wrist was created. This
stage was composed of 404 TSWs. Here four objects8 were placed
8 Specifically a mug, a key-ring, an ID card and a mint-box.



Table 3
Object recognition performance.

Class Classified as Performance

Mug Keys Box Card TPR FPR

Mug 119 1 2 1 96.7% 0.7%
Keys 1 128 3 4 94.1% 2.2%
Box 0 2 74 1 96.1% 1.5%
Card 1 3 0 64 94.1% 1.8%
Mean 95.3% 1.6%

Head camera Hand camera 

Fig. 17. Acquisition examples obtained from both cameras.
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on a uniform table, separated approximately by 15 cm (without ob-
stacles). Using the same configuration described in Fig. 1, a user per-
forms grasping movements without actually grasping the object, he/
she then performs the same action with other objects. Using this se-
quence, the HMM's ability to correctly predict each TSW as a fixation
or grasping movement was evaluated. Although there were multiple
objects on the table, an HMM trained with only one object (from
the Experiment 1) was used. The main objective is for the system to
correctly predict an action independent of the objects contained in
the scene, validating our results in unknown environments.

Table 1 shows the performance obtained from this experiment as a
confusionmatrix; classified as True Positive Rate (TPR) and False Positive
Rate (FPR). One can see that performance is high when detecting grasp-
ing movements, nonetheless, a high false positive rate is also present.
The majority of those false positives occurred while observing abnormal
user behavior: for example, the hand extends toward the object in a
normal position but the user does not immediately initiate the gesture.
This unpredicted hesitation is probably due to user stress. In future devel-
opments, this will be taken into account by integrating a static hand
movement estimation.

Table 2 shows the object recognition performance. It is clear that the
codebook constructed by the VQ method can be an efficient method to
detect resilient features and thus build a robust object dictionary from
each TSW. In addition, it is also clear that using a limited number of ob-
jects has been a key factor in achieving this high performance (Table 3).
Table 1
TSW analyzed over each hand motion video.

Object Zoom in-out Rotation motion Translationalmotion

Frames TSW Frames TSW Frames TSW

Cup 1876 622 1226 405 1051 347
Bottle II 1894 628 1211 401 726 240
Mug 2231 739 1221 404 1016 336
Box 2393 792 1209 400 942 312
Deodorant 2414 799 1200 397 934 309
∑ 10,808 3580 6067 2007 4669 1544
Bottle I a 2292 759 1208 400 928 307

a Training data.

Table 2
Grasp gesture performance.

Class Classified as (TSW) Performance

Fixation Reach-to-grasp TPR FPR

Fixation 270 54 83.3% 1.9%
Reach-to-grasp 6 74 92.5% 16.7%
Therefore, in the future it would be interesting for the system to be test-
ed with additional objects.

5. Conclusions

The main contribution of this work lies in creating a system by fusing
the user's gaze and a hand motion estimation. These experiments show
that the proposed method can predict user grasping movements as well
as the targeted object in the scene by fusing two channels of information.
Themain contribution of this work lies in the choice to use human vision
combinedwith active vision in the form of amicro-camera placed on the
user's wrist. Indeed, the Temporal Slide Window (TSW) paradigm has
proven to be an efficient way to recognize human gestures and objects.
It can describe complex and diverse temporal visual descriptors com-
pared with classical frame-to-frame analysis. In general, the system has
obtained a gesture performance between 80% and 90%. Although the
objects analyzed were limited in these experiments, the results are very
promising due to the fact that a limited number of resilient features
were used.

The proposed method could be utilized in human–computer interac-
tion systems, e.g. [50,42], or as for example, in the project BRAHMA.9

In this case, the control movements in people with neural degenerative
disorders are altered causingmotion tremor or slowmovements. Despite
the fact that the visual functions of those affected by this disorder have
not been altered, the control system is unable to plan correctmovements
without anydisruption. In this case ourmethod could helpby recognizing
grasping gestures. As a future work, the redundancy between visual
information provided from both points-of-view will be exploited.
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