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Abstract—Taking something in a hand requires a complex
coordination of sight and hand. However, many people with
neurodegenerative diseases or other coordination problems are
unable to correctly perform this action. This research paper
presents a hand motion interpretation system, which uses a video
flow captured from under the user’s wrist, known as active
perspective. To assess the algorithm, we have placed a variety of
objects in a work area in front of the user. Through the video
flow, our system can classify different hand movements with
regard to the objects on the scene. For motion classification,
we have proposed a set of descriptors, which are used by the
classification algorithms kNN and HMM. Results show that our
system is capable of detecting over 90% of approaching and
lateral motions, regardless of what the objects on the scene are.

I. INTRODUCTION

There is currently a growing interest in developing inter-
faces for arm and body motion recognition relating to object
manipulations. Some of the best known systems are videogame
controllers, like the Nintendo Wii sensor that enables game
control through external body devices, or just by moving
the body, as is the case of Microsoft’s Kinect sensor. A
less explored area is the application of visual systems to
people whose daily lives are extremely limited by motion
difficulties in arms, legs or both, or by a neurodegenerative
disease. This is why new forms of man machine interaction are
continuously being searched, which is not simple task, because
recognizing a user’s motion in respect of an object needs
constant follow-up of the objects on the scene, apart from
determining any geometric or photometric changes through
temporal segmentation, as well as any changes in perspective
with regard to previous moments [1]–[4].

This research proposes a system, which uses a below wrist
camera to detect the objects in front of the user and determine
the latter’s movements in respect of these objects from changes
in the input video flow. Most current methods involve cameras
facing the user to capture people’s gestures. These methods are
called passive, and require segmenting hand or body motions
(e.g. [2], [4]–[8]). In other systems, the user’s eyes serve as
pointer, through a device known as EyeTracker that detects
the slightest cornea’s reflection through very accurate sensors,
thus yielding a specific scene position [9], [10].

Although passive methods have been very successful, their
main limitation is precisely the fixed sensor position. This
is why this research was designed to propose an active
system for the recognition of hand motion towards an object.
Active systems are based on sensors located on the body,

and consequently, as the user moves, so do the sensors (e.g.
[11]). However, it is only possible to visualize the motion flow
towards or away from an object for each user action, which
brings in the great complexity of inferring the hand motion
from the optical sequence on the sole knowledge of a hand
approach towards the object that the user wants to take.

Our solution to the stated problem was to develop a motion
inference algorithm and apply it to a video containing user
gestures in respect of various objects in front of him or her.
Experimentation proved that one of the best camera positions
to achieve this end was under the user’s dominant arm, at the
level of the wrist, as shown in the configuration captured in
Fig. II-Aa. Even though we did not use a micro camera in
our experiments, the system is not limited to function with
any given device; hence, any video camera with the same or
better features may be used. This representation exemplifies
the work method of a person seating at a work station and
his or her interaction with the various objects located in
the work area. So as to simplify and make the prototype
development more efficient, the experiments were conducted
in an ideal and controlled environment comprised of a lit-
up cubicle with white walls, blue bottom and background,
designed to facilitate object itemization (Fig. II-Ab). The set
of analysed gestures are forward, backward, rightward and
leftward movements, and any combination of these motions.

A brief description of the document sections is as follows:
Section 2 provides a summarized state of the arts, with the
algorithms used in the proposed solution. Section 3 describes
the proposed model. Performance results from the conducted
experiments are contained in Section 4. Finally, Section 5
presents the conclusions and possible improvements to our
proposal.

II. BACKGROUND INFORMATION

The main algorithms for active and passive hand motion
determination are outlined in this section, followed by an
analysis of the algorithms used in our research that will serve
as basis to the next section.

A. Passive Algorithms

Passive methods are designed to operate from a perspective
that is external to the user. This means that a camera captures,
from a fixed position, the body motion towards an object
or the interaction between them. The following is a brief
review of some of these systems. Bobick et al. [1] use a
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Fig. 1. System environment. (a) Camera placement under wrist, (b) Example
of development scenario

passive system for capturing a person’s action and creating
a motion history, without the need for any accessories, for
further comparing the motion histograms with a knowledge
base to interpret the action. Duca et al. [12] present a library
that enables any user to handle tridimensional applications
using one or both hands, by wearing finger colour labels. Since
the project is focused on a domestic use, a low cost camera and
easily available and affordable accessories are used. Freeman
et al. [3] propose creating orientation histograms based on the
user’s hand position to yield feature vectors. This approach
does not require any accessories, because it works directly with
the hand, and it is aimed at a less complex analysis to speed up
computation. Martin and Crowley [13] consider hand gestures
in front of a projector to yield a virtual desktop. They do not
deliver a final solution, but only the idea and methods that
may be used in hand recognition, including the detection of
skin, morphological transformations and differences between
images. The project developed by Gupta [4] is inspired on
hand signs, and is hence based on the American Sign Lan-
guage (ASL). This approach analyses gestures of a static hand,
and filtrates the acquired gesture for subsequent comparison
with a knowledge base. The captured images are segmented
and filtered by Otsu’s algorithm, using morphological filtering,
finally yielding a representation of the hand contour. Lastly,
Kim [6] goes for hand motion and gesture recognition, on
the basis of a skin colour obtained from facial recognition.
Adjacent images are subtracted, because this system is passive.

B. Active Algorithms

Active systems are not limited by camera position, as they
are designed for a continuous representation. Bajcsy [14] and
Aloimonos et al. [15] delivered the paradigm for proposing
new models and control strategies in active perception systems.
The first active camera systems were designed to provide
perception to autonomous robots. Active systems generally
include cameras located on the human body, and new ways are
presently being offered to increase man machine interaction,
thus enabling users to move freely.

From a computer based perspective, this scheme gives the
user access to a better representation of his or her environ-
ment [11], [16]–[18]. The nature of these algorithms makes

them a more accurate option to achieve this goal, because
they are directly based on the user’s arm movements.

C. Methodological Algorithms
SURF: Speeded Up Robust Features [19], is a detector

and descriptor of image keypoints, invariant to scaling or
rotation. As it requires significantly less computing time, it
is similar to existing detectors and can even surpass them in
what regards repeatability and robustness [20]. Its applications
are varied, including, for instance, looking for matches in
two images, identifying objects and 3D remodelling [21].
Fast keypoint detection, distinctive description of detected
points, expeditious descriptor matching and high repeatability
scores are among its main features. Computing time being a
critical factor in our proposal, point detection with a degree
of invariance and robustness becomes essential, particularly in
image sequences presenting substantial changes.

kNN: is a non-parametric and supervised classification
algorithm that calculates the distance from a dataset to a larger
database containing the classification model [22]. It is aimed
at classifying by closeness to the k nearest neighbours. No
learning concept is associated with this algorithm, since the
class of an object is predicted for classification by finding
the most similar objects. The most common metrics are
used to measure neighbour proximity, such as Euclidian and
Mahalanobis distances. Further details on their implementation
can be found in [23]. The real time operation requirement gives
relevance to implementing an algorithm capable of efficiently
classifying data groups without the need for additional pa-
rameters, so as to obtain shorter times, and depending on data
behaviour, more accurate classifications as well.

HMM: The Hidden Markov Model (HMM) algorithm [24]
is a statistical model, where data to be modelled are assumed
to have a Markovian behaviour with unknown parameters.
This implies that there are hidden states that can only be
observed through another set of stochastic processes. The
model is aimed at determining these unknown parameters from
observed data.Learning is a stage prior to classification and
consists in a single run process yielding matrixes to be used for
classifying [25], [26]. The main problem of Markov’s hidden
chain is that the probabilities needed to model the system
are unknown. They are obtained throughout the learning cycle
that considers a training dataset to find the information that
marks the transition between states and enables modeling, as
well as maximizing probabilities, a process completed through
the use of the Baum-Welch algorithm. On the other hand, the
optimal path to a state is determined by the Forward-Backward
algorithm, which calculates the probability of a sequence
resulting from the already known parameters of a HMM;
i.e., the likelihood of the system being in a T state, given
a set of observations. All possible states of a sequence must
be determined to this end, based on the current combination
of observed states. The learning stage makes a classifier
available to the system for data behaviour interpretation prior
to classification. Having more than one classifier enables their
complementing one another for maximum accuracy.
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Fig. 2. Interleaved frame extraction model in a temporal frame block

III. PROPOSED METHOD

The algorithm’s preliminary phase adjusts the video size
defined with a 360×240 pixel resolution. Even if low, this res-
olution has two important advantages: Firstly, it enables SURF
to create a sufficient number of descriptors, and secondly, it
requires little computing time compared to higher resolutions.
These steps significantly reduce video loading and processing
times, and deliver results in real time. The proposed method is
comprised of five phases: First comes the extraction of a given
number of frames per second for processing by the SURF
algorithm in search of keypoints [19]. The resulting more
marked changes between periods of time facilitate motion
recognition. Second, the RGB channels are merged into a
single gray scale channel; hence, reducing the volume of video
flow information. Thirdly, invariant keypoints are detected in
each of the SURF selected frames, to then match, in the fourth
phase, the various keypoints to the frames selected during the
first phase. A set of descriptors is generated in the fifth phase
to describe the motion yielded by the optical flow. Then, these
descriptors are used by the classification algorithms that assess
the information and classify the type of motion. The phases
of the proposed algorithm are separately detailed below.

A. General Process Stages

I. Frame Extraction: A defined number of equidistant
frames is extracted per second, so as to be able to identify the
most marked motion changes on the scene in a temporal frame
block. See an example in Fig. 2. The greatest advantage of
this scheme resides in speeding up the algorithm and reducing
descriptor noise during the fifth phase

II. Conversion to Gray-Scale: All three RGB information
channels are merged into a single gray-scale channel during
this phase. Although colour information may be useful, SURF
uses a single channel for keypoint detection.

III. Descriptor Obtainment: Invariant keypoints extracted
by SURF during this phase form a matrix with point de-

scriptors and positions in each frame. Using these invariant
keypoints gives an edge of independence from the objects on
the scene. Fig. 3 shows an example of keypoints detected in
an image.

IV. Keypoint Matching: During this phase, the keypoints
that are found in one frame are matched to those in other
selected frames (interleaved by λ-frames), eliminating those
that show no similarity by means of the NNDR algorithm [27].
This process enables linking multiple points in different frames
(Fig. 4).

V. Descriptor Generation: During this final phase, the
proposed metrics are put to use to determine whether there
was movement, and a matrix system is produced, where a
keypoint map is created indicating point positions in each
processed frame. Since the recognized motions are horizontal
and in depth, a separate work model is defined for each.
Because this aspect is a core matter in our research, a
detailed description follows on how the set of descriptors is
generated for interpretation. Horizontal motion is defined as
the horizontal difference between several pairs of keypoints, as
shown in Fig. 5, where −→di

t
and −→di

t+λ
represent the difference

between pairs of corresponding keypoints in two matching
frames. The motion direction is defined as rightward when
the difference is positive, and leftward when negative. Motion
in depth, whether forward or backwards, is determined by
analyzing distances between keypoints in the same frame and
comparing the difference with its correspondent in another
frame. Any increase in the absolute difference between −→di

t

and −→di
t+λ

is interpreted as the user’s hand approaching an
object, with any decrease considered as moving away from
the object. The diagrams in Fig. 5 represent these models.

B. Descriptor Generation

Next, we describe ten motion descriptors (d1 7→ d10) used
to describe a gesture. We separate our analysis in regard
to horizontal and depth motions. For this, let k the set of
keypoints pairs in correspondences in two interleaved frames
of size n×m pixels.
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Fig. 3. An example of a keypoint detection for each selected frame
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Fig. 4. Matching between two interleaved frames

I. Horizontal Motion: Horizontal motion descriptors are
drawn from the information on keypoint pairs contained on
the horizontal axis. For this, let pti(x, y) and pt+λi (x, y) a
corresponding pair of keypoints contained in t and t + λ
times respectively, and let li = ||pti(x) − pt+λi (x)|| the
euclidean horizontal distance between to interleaved frames
of the i-corresponding pair (Fig.5a). The following proposed
descriptors are,

• The arithmetic mean of Euclidean distance

d1 =
1

k

k∑
i=1

|li|

• The average value of difference measurements

d2 =
1

k

k∑
i=1

−→
li

Descriptor d1 is used to determine the magnitude of a
motion, while d2 the difference provides the motion sense.
Specifically, the difference in coordinates from t to t+λ times
is negative when moving to the left, and positive for rightward
motions. From these descriptors, three classes of motion can
be determined: (1) leftward, (2) rightward and (3) at rest.

II. Depth Motion: The following descriptors were gen-
erated to describe depth motion. For this, let A the set of
keypoints pairs above the horizontal centre, and let B the set
of keypoints pairs in correspondences below the horizontal
centre, where the centre of the frame is located at n/2 pixels.
The following proposed descriptors are,

• The average direction of the gradients formed by the
pairs of points above and below the horizontal centre of
the frame in a collapsed frame-time (Fig.5b).

d3 =
1

|A|
∑
i∈A

ui

d4 =
1

|B|
∑
i∈B

vi

where ui and vi are gradients of sets A and B respec-
tively.

• The average keypoint distances to their mass centre point
mt and mt+λ (Fig.5c-d);

d5 =
1

k

k∑
i=1

ci
t

d6 =
1

k

k∑
i=1

ci
t+λ

where cti = ||pti −mt|| and ct+λi = ||pt+λi −mt+λ||.
• The centre point coordinate differences (Fig.5f-h),

d7 =
(
mt+λ(x)−mt(x)

)
d8 =

(
mt+λ(y)−mt(y)

)
• The arithmetic mean of the distance ratio between frames

from the keypoints to the straight line drawn from the
centre point in t time, using its horizontal coordinate
(Fig.5h-i).

d9 =

∑
i∈A |pti(y)−

n
2 |∑

i∈A |p
t+λ
i (y)− n

2 |

d10 =

∑
i∈B |pti(y)−

n
2 |∑

i∈B |p
t+λ
i (y)− n

2 |

Descriptors d3 and d4 represents the gradient ratio of
matched points above and below the horizontal centre of
the image, resulting from drawing an imaginary straight line
connecting each point to its pair. When motion is an approach,
keypoints tend to spread out, and they tend to compress when
moving away (Fig. 5b). Descriptors d5 and d6 measures the
average distance from a set of keypoints to its centre point per
frame. This means that the keypoint cloud has a centre of mass,
and each keypoint is a certain distance away from this centre
(Fig. 5c-d). The distances are averaged out and compared to
the next frame (Fig. 5e). A t time distance that is greater than
that in t + λ is considered an approaching motion, and the
opposite, as moving away. These distances are illustrated in
Fig. 5f. Descriptors d7 and d8 is the difference in centre point
coordinates, as additional information on the displacement
undergone by a point cloud from t to t+λ. Finally, descriptors
d9 and d10 are obtained through the following process:

1) a t + λ time keypoint cloud is centered on the t
mass centre of the keypoints, with the difference in
coordinates provided by the previous descriptor;

2) a mean straight line is drawn by means of the y
coordinate representing the t frame centre point n

2 ;
3) distances of the cloud of points to the mean straight line

are determined;
4) distances over the mean straight line of the first cloud

are divided by those of the second cloud, and the same
applies to distances of points below the line, and

5) the average of both ratio vectors is found.
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Fig. 5. Gradient behaviour analysis in multiple motions

The eight previously outlined descriptors (d3 7→ d10) allow
for depth motion to be classified into the following categories:
(1) forward, (2) backward, and (3) at rest.

C. Classification of Results

The preliminary classification yields a new descriptor that
models the recognized motion, thus totalling three descriptors
for horizontal and nine for depth motions. Using the previously
mentioned classification algorithms requires calculating a large
database, populated with all descriptors and several iterations
of the various motions. Each proposed descriptor provides rel-
evant information for interpreting changes throughout time, but
using all of them does not contribute to motion classification,
and may even duplicate information. Consequently, trials were
needed to choose the best possible combination by feature
selection.

D. Algorithm Training

The HMM algorithm learning process runs once and gener-
ates the probability matrixes needed for motion interpretation.
Because there are two types of movements to be interpreted,
learning must be run once for each. As previously stated,

the descriptors generated differ according to the type of
motion being analyzed, and the best combination of them is
used in order to optimize results. Non-observable states of
horizontal motion are: (1) leftward, (2) rightward and (3) at
rest, and depth motion states are: (1) forward, (2) backward
and (3) at rest. Unlike HMM, the kNN algorithm needs no
training in classification, and hence, it must be run every
time that a classification is required. Even though this may
be counterproductive, its calculations are simple and do not
affect the overall system performance. Both algorithms are
used to interpret the descriptors generated for horizontal and
depth motion, but only one must be chosen for interpreting
both motions.

IV. ANALYSIS OF RESULTS

A. Work Environment

The results shown in the following sections were always
obtained with the same equipment, objects and work cubi-
cle configuration. Selected objects are characteristically of a
mainly uneven texture, so as to prevent that the algorithm
detects insufficient keypoints for a good comparison, in reason
of an even object surface.



B. SURF Thresholds

In practice, not many keypoints are necessary for motion
recognition, normally requiring 70 to 100 in average for the
algorithm to identify a gesture. Considering this, run times and
the amount of keypoints kept upon filtering were analyzed,
so as to shorten times. It must be noted that defining a very
high threshold keeps less keypoints than the specified required
range. In doing so, it must also be considered that the number
of keypoints found is in direct proportion to the texture of
the object in front of the camera, which may lead to finding
an unacceptable number of keypoints. Run times are also
proportionately shorter with lower threshold values, as less
time is needed for keypoint detection and matching.

C. Run Times

The time shortening arrangement used enabled our system
to process a sequence in real time. Final times also decrease
as the SURF threshold is increased, and the kNN algorithm
requires less processing times that HMM. This means that time
is proportional to the number of frames extracted per second.
Table I shows the system run times for processing one frame
per second, including all five process phases.

TABLE I
FINAL SYSTEM RUN TIME

Threshold Percentage kNN HMMretained
- 100% 0.1437 0.1451

100,000 79% 0.1153 0.1167
200,000 67% 0.0931 0,0945
300,000 45% 0.0778 0.0792
400,000 32% 0.0704 0.0718
500,000 23% 0.0642 0.0656

It must be considered that if more than eight frames are ex-
tracted per second without applying any threshold, processing
times exceed the limit for real time.

D. System Performance

The number of frames to be extracted per video second must
be defined. This number depends on the speed of the motion
to be recognized, four being the recommended minimum
for rather slow motion units, and eight for fast movements.
Although the system is not restricted to this range of frames
per second, these values actually yield the best performance
results, both in respect to run and interpretation times, when
classifying different types of motion.

The system performance measurement process begins with
videos that are unknown to the system, so as to test its
behaviour under unknown circumstances. Horizontal and depth
motions were recorded, as well as a mixture of both and slight
movements without any intentionality. Each recorded video
lasted approximately 30 seconds. Since each second yields 30
frames, the test involved 900 frames in all. A more detailed
explanation of the motions recorded is provided below.
• Horizontal: The prevailing arm moves to the left and to

the right.

• Depth: Forward and backward motions are directed to-
wards and away from the same object;

• Robotic Motion: All motion, whether horizontal or in
depth, is in a straight line;

• Motion Mix: This is comprised of natural gestures,
without any restrictions.

It must be taken into account that all motion is tridimen-
sional, and therefore, always comprised of a horizontal coor-
dinate, as well as a depth one, with one showing more change
than the other. For instance, the horizontal coordinate of a
leftward motion varies more than the depth coordinate, which
should remain within the same range of values. The results
presented in the following paragraphs were obtained without
any threshold. A video was selected to show classification
performance by category and to analyze the results obtained
when extracting four, six and eight frames.

To assess the algorithm performance, an F-score was de-
termined using recall and precision rates. The former is the
number of correct results divided by the total number of cases
classified in a given class, and the latter provides the total num-
ber of correct results for that class. Both rates are expressed
in percentages and measure the algorithm performance. Their
ratio is integrated as a single measurement:

Fscore = 2× R× P
R+ P

where the ideal classification is attained when Fscore = 1.

TABLE II
CLASSIFICATION WITH KNN

Category Type of Mov. 4 6 8
movement classification Frames Frames Frames

Horiz.

Horizontal
Leftwad 100% 99.10% 100%

Rightward 97.78% 98.82% 96.43%
Rest 99.55% 100% 99.09%

Depth
Forward 92.68% 83.33% 90.00%

Backward 80.00% 100% 100%
Rest 98.64% 99.18% 99.70%

Depth.

Horizontal
Leftward 100% 100% 100%

Rightward 22.22% 40% 0%
Rest 96.30% 98.99% 99.75%

Depth
Forward 76.96% 86.49% 90.48%

Backward 30.77% 44.44% 72.00%
Rest 98.14% 97.98% 99.11%

Robot

Horizontal
Leftward 100% 100% 100%

Rightward 95.24% 93.02% 97.67%
Rest 99.32% 99.36% 99.85%

Depth
Forward 92.31% 97.44% 98.25%

Backward 92.31% 96.77% 100%
Rest 100% 99.34% 99.84%

Mix

Horizontal
Leftward 100% 100% 100%

Rightward 100% 95.83% 98.04%
Rest 100% 99.39% 99.79%

Depth
Forward 95.83% 100% 100%

Backward 92.31% 100% 100%
Rest 98.55% 100% 100%

System performance results obtained from classifying four
motion categories are presented in Tables II and III, with each
motion having a horizontal and a depth coordinate. These re-
sults show that kNN performs better than the HMM algorithm,



TABLE III
CLASSIFICATION WITH HMM

Category Type of Mov. λ = 4 λ = 6 λ = 8
movement classification frames frames frames

Horiz.

Horizontal
Leftward 55.17% 65% 80%

Rightward 70% 69.88% 78.57%
Rest 97.08% 95.91% 98.42%

Depth
Forward 100% 100% 100%

Backward 100% 100% 100%
Rest 100% 100% 100%

Depth.

Horizontal
Leftward 100% 100% 100%

Rightward 22,22% 40% 0%
Rest 96.30% 98.99% 99.75%

Depth
Forward 76,96% 86,49% 90,48%

Backward 30.77% 44.44% 72.00%
Rest 98.14% 97.98% 99.11%

Robot

Horizontal
Leftward 84.62% 91.89% 91.43%

Rightward 64.52% 70.18% 73.68%
Rest 93.57% 96.96% 98.15%

Depth
Forward 73,47% 76,60% 88,89%

Backward 32,00% 70,83% 88,70%
Rest 98.64% 98.47% 99.35%

Mix

Horizontal
Leftward 90.32% 100% 100%

Rightward 76,60% 82,14% 75.76%
Rest 95.79% 96.86% 96.46%

Depth
Forward 100% 98.55% 100%

Backward 90.91% 66.67% 92.31%
Rest 99.52% 99.07% 99.78%

when detecting motions comprised of depth and horizontal
displacement. The results are derived from a measurement of
classification by type of motion. Video processing results show
an improvement when six or eight frames are extracted. The
system could be strengthened by combining both classification
algorithms, so as to increase the score rate. Finally, the system
proved capable of detecting 98% of slight motions, which
account for hand shaking or inactivity.

Classification results generally show that the kNN algorithm
heightens system performance. However, it is important to
consider that low performance outcomes in motion classifi-
cation, below 70%, do not imply a significant error rate in the
overall system’s classification. These values are reviewed in
more detail later in this paper. In sum, these results indicate
that kNN yields better results, but the support provided by the
HMM algorithm must not be discarded.

E. System Performance with different SURF Thresholds

The system performance curves obtained from defining
different thresholds for SURF are presented below, together
with an analysis of performance outcomes of extracting eight
frames per video second (λ = 8) a number that leads to the
best performance, according to the previously stated results.
Additionally, performance is analyzed with a combination of
kNN and HMM, given that the first showed better results.

Average performance percentages of motion classification
{Leftward: LF, Rightward: RW, Backward: BW, Forward: FW,
Horizontal Rest: HR and Depth Rest: DR} are shown in
Fig.6, organized by type of motion and by applied threshold.
Table IV shows the performance of each movement applied
on different video motion and gesture.

TABLE IV
PERFORMANCE WITH λ = 8

Video category

LW

SURF Horizontal Depth Robot Mix
100% 100% 100% 100% 100%

79% 99% 100% 98% 97%
67% 99% 100% 100% 100%
45% 100% 100% 100% 100%
32% 100% 100% 100% 98%
23% 100% 100% 100% 100%

RW

100% 97% 100% 99% 97%
79% 97% 25% 99% 92%
67% 97% 67% 97% 89%
45% 97% 70% 99% 92%
32% 97% 45% 98% 87%
23% 97% 54% 98% 88%

FW

100% 99% 86% 94% 93%
79% 100% 93% 94% 98%
67% 100% 93% 93% 98%
45% 100% 94% 95% 97%
32% 100% 92% 95% 97%
23% 99% 95% 97% 97%

BW

100% 100% 68% 87% 82%
79% 100% 76% 79% 89%
67% 100% 82% 74% 89%
45% 92% 73% 72% 84%
32% 100% 72% 91% 84%
23% 50% 58% 76% 45%

HR

100% 99% 100% 100% 100%
79% 99% 100% 100% 100%
67% 99% 100% 100% 99%
45% 99% 100% 100% 99%
32% 100% 100% 100% 99%
23% 100% 100% 100% 99%

DR

100% 100% 99% 100% 99%
79% 100% 99% 99% 100%
67% 100% 99% 99% 100%
45% 100% 99% 100% 100%
32% 100% 100% 100% 100%
23% 100% 100% 100% 100%

The analysis of leftward gestures yields classification results
within similar levels for all categories, over 99%, while right-
ward motion detection shows better outcomes for Forward and
Backward movements. With regard to depth, forward motion
classification tends to improve as the number of keypoints
found in an image decreases. The charts show an even and
almost linear performance, always exceeding 98%, in respect
of gestures at rest. This is basically due to the fact that there
are no significant variations between frames that could affect
descriptor generation and analysis.

F. SURF Threshold Impacts on Performance

To explain the cases where performance curves follow
irregular patterns, we must review how octaves and thresholds
work in the SURF algorithm. SURF uses octave filters, with
each octave being a filter scaling level that uses a different
size window to find keypoints with diverse contrast. According
to Ehsan et al. [28], when no thresholds are defined for
SURF, low contrast keypoints are predominantly found at the
first octave levels, and higher octave levels contribute less
keypoints with more contrast.

When no threshold is applied, the keypoints found in an
image are ordered by octave, and thus, a larger amount of
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Fig. 6. Performance evaluation on multiple SURF Threshold with different type of motion

keypoints are found at the first octave and a lesser amount at
each subsequent one [28]. It would be logical that the number
of keypoints found by octave decreased proportionately to
any threshold level applied. However, there are actual cases
where higher octaves keep more points than the lower levels,
or where the keypoints found concentrate at middle levels.
This is due to the fact that threshold definition can discard
keypoints that contribute information necessary for the system
to generate robust matching descriptors. The reason behind
this situation is that keypoints of importance for motion
interpretation are eliminated at various octave levels. With
less keypoints that do not sufficiently represent motion by
themselves, the algorithm finds difficulty interpreting any such
motion. As can be seen in Table IVBW, keypoint maintenance
percentages show curves that are more stable at 79% and 67%.

G. Overall Performance of the Proposed Method

When different thresholds are applied with SURF, low con-
trast keypoints, which are found at the lower octave levels, are
discarded. Normally, detected keypoints mostly concentrate at
the lower octave levels, but the contrary can happen, or even
that they converge at middle octave levels. When keypoints
are discarded at the lower levels, frame information is lost,
with the direct consequent impact on the system classification
performance. Regardless of these unfavourable cases, system
performance outcomes have proved encouraging, exceeding
an 80% F-score for each type of motion. Average results are
presented in more detail in Table V.

TABLE V
AVERAGE SYSTEM PERFORMANCE BY TYPE OF MOTION

Performance
Leftward 95%

Rightward 85%
Forward 85%

Backward 80%
Rest 99%

From the results shown in Table V and considering un-

favourable cases, it can be seen that the system has a high
performance level in classifying any given instance.

V. CONCLUSIONS

This research has provided an active machine vision sys-
tem for hand motion recognition, mainly when the gesture
consists in grabbing or has a trajectory. We have shown that
our solution, notably the proposed set of descriptors, yields
efficient results in real time, through the use of a low resolution
video and gray scale images. We want to emphasize the fact
that our system works independently from the objects on the
scene, since descriptor generation –on the basis of keypoint
matching with SURF– enables usage of the algorithm in a
variety of scenarios. The system could also be used to support
a therapy or rehabilitation protocol, and even contribute to
motion analysis in neurological studies.

In connection with the classification stage, two types of
supervised classification algorithms, namely, kNN and HMM,
were assessed, so as to get a performance benchmark. The
former looks for the best distance from a given dataset to
a space of neighbouring elements, while the latter requires a
preliminary learning phase to be capable of finding the system
parameters, specifically, transition probabilities. Even though
both algorithms have different generation and classification
processes, results showed that they both perform well in
classifying the motions studied in this research.

The only factors that affect the matching process times are
the number of keypoints found in an image and the size of
the vector of descriptors created for each point. The process
that interprets and classifies system generated descriptor data
is the shortest of all. A direct analysis of system descriptors
for output delivery by the pre classification module minimizes
computing time for this process. The overall time of a frame
processing by the system is generally reduced in proportion to
the percentage of keypoints remaining when a SURF thresh-
old is applied. It must be considered that the more frames
extracted, the longer the processing time, which can even
exceed the real time limit in some cases. In order to prevent



this from happening, the threshold value can be increased,
always considering any system performance variations that
may be entailed. Therefore, the system is capable of efficiently
processing a video second when the number of frames defined
for extraction is four to six per second, and even with eight
frames in some cases.

There are several possibilities for run time improvement, of
which the fastest to implement are:
• Lowering the video resolution: It is logical that lower

resolution require shorter computing times. However, the
SURF algorithm could find less keypoints, thus affecting
the final system performance.

• Changing the processing software: MATLAB works
with matrixes, but OpenCV is designed to work with
images and videos, and could significantly reduce com-
puting times.

• Implementing a GPU Code: More processors, namely
graphic cards, would significantly shorten computing
times, and allow for processing more frames per second
and larger images.

For performance improvement in the horizontal category,
new descriptors could be designed to provide support infor-
mation, so as to increase the number of comparison points
for a more accurate distinction of individual gestures. For
instance, acceleration and difference in angles with regard to
the perpendicular line of detected keypoints between a frame
in t time and another in t + λ could be considered. A way
to increase robustness in the case of depth motion could be
to take into account the eccentricity and size of the axes of a
point cloud ellipse, as well as the rate of keypoints remaining
in a frame per defined sector.

Finally, it must be noted that the delivered system and its
tools are intended for improvement and implementation within
a larger project. This research has yielded an efficient solution
to the proposed problem, including several implementation
options depending on the environment in which it is used,
and may be supplemented by other systems to contribute to
the science of active recognition.
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Murcia, June 2010.

[22] C. G. Cambronero and I. G. Moreno, “Algoritmos de aprendizaje: Knn
y kmeans,” Master’s thesis, Universidad Carlos III de Madrid, 2006.

[23] A. Moujahid, I. Inza, and P. Larrañaga, “Clasificadores k-nn,” Master’s
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