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Abstract The classic image processing method for flaw de-
tection uses one image of the scene, or multiple images with-
out correspondences between them. To improve this scheme,
automated inspection using multiple views has been devel-
oped in recent years. This strategy’s key idea is to consider
as real flaws those regions that can be tracked in a sequence
of multiple images because they are located in positions dic-
tated by geometric conditions. In contrast, false alarms (or
noise) can be successfully eliminated in this manner, since
they do not appear in the predicted places in the follow-
ing images, and thus cannot be tracked. This paper presents
a method to inspect aluminum wheels using images taken
from different positions by using a method calledautomatic
multiple view inspection(AMVI). Our method can be ap-
plied to uncalibrated image sequences, therefore it is not
necessary to determine optical and geometric parameters nor-
mally present in the calibrated systems. In addition, to im-
prove the performance, we designed a false alarm reduction
method in two and three views called Intermediate Classi-
fier Block (ICB). The ICB method takes advantage of the
classifier ensemble methodology by making use of feature
analysis in multiple views. Using this method, real flaws can
be detected with high precision while most false alarms can
be discriminated.
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1Escuela de Ingenierı́a Informática, Facultad de Ingenierı́a, Universi-
dad Diego Portales, Av. Ejército 441, Santiago, Chile
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1 Introduction

Over the last 30 years the worldwide manufacturing mar-
ket has faced heavy competition to produce higher quality
products while actively reducing prices. This has led to great
advances in the technology required for automating produc-
tion processes but inspection and quality control problems
have yet to be fully resolved. Due to these gaps in the in-
dustry, several automatic inspection techniques represent an
area of high interest and active research. Traditionally, in-
spection and quality control in manufacturing environments
have been carried out by means of an intensive human vi-
sual inspection inserted into different phases of the produc-
tion processes [33]. The economic benefits represent some
of the main reasons this kind of inspection is used. The in-
vestment cost to install and develop a specialized machine
for inspection tasks is very high compared to the cost of
training a human operator. Also, human visual inspection
has the great advantage of adapting to unforeseen situations
and is flexible when faced with any change in the objects’
position, orientation or shape. This is because human beings
have high cognitive and sensory abilities that allow them to
carry out complex reasoning and inferences while inspecting
the objects [40].

Various studies have analyzed the performance of hu-
man inspection and its main defects (e.g. [10, 11, 19, 32]).
According to them, there is a clear consensus that human
inspection does not achieve 100% performance in the detec-
tion of defect-free products (error-free). Mital, et al. [32] de-
termined various factors that affect the performance of man-
ual inspections, such as the rhythm and complexity of the
task, the time for inspection, fault density, inspection model,
luminosity, inspection strategy, training, age, and gender.
Other authors have indicated that human inspection has a
maximum of 80% effectiveness [11]. Human inspection does
have constraints as well as multiple failures, it is (1) variable,
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inspection quality is not constant over time because it is de-
pendent on fatigue and monotony caused by the work; (2)
irregular, because it depends on the ability, experience and
strategy for revision of each inspector; (3) slow, some indus-
tries have high production levels and require inspection ata
high processing rate, however human inspection can require
more time because handling and observation tasks have lim-
iting factor, such as the speed of human operations; (4) te-
dious, because the inspection routine can be very repetitive
which generates a lower concentration level due to the large
number of objects that must be revised in a short period;
(5) hazardous, because in some environments such as un-
der water inspection, the nuclear industry, and the chemical
industry, human inspection can be inviable due to the high
risk inherent in those systems; (6) complex, the difference
between a product with or without defects can be very sub-
tle, and that is not always easily distinguishable by a human
operator; (7) inaccessible, in some cases even access to the
object to be inspected can be very complex because of the
size of the product. All of these factors have lead industry to
gradually replace human inspection with automatic visual
inspection (AVI) methods which allow contact free inspec-
tions to be made of the object.

Since the introduction of AVI methods in the early 1980s
[8,20], several systems for quality inspection have been suc-
cessfully developed using different image processing tech-
niques. The main objective of AVI is to increase productiv-
ity ensuring high quality, reliability and consistency stan-
dards, i.e., rejecting most of the defective products and ac-
cepting all the defect-free products. AVI inspections nor-
mally require less time than inspections performed by hu-
man operators. Malamas, et al. [25] and Kumar [22] have
presented extensive reviews of various AVI technologies ap-
plied to the manufacturing processes of different products
such as electronic components, textiles, glass, mechanical
parts, integrated circuits (IC), etc. Despite their advantages,
AVI methods in general also have the following problems.
1) They lack precision in their performance because of the
imbalance between undetected flaws (false negatives) and
false alarms (false positives). 2) They are limited by time,
the mechanical requirements for placing an object in the de-
sired position can be time consuming. 3) They require high
computer cost for determining whether the object is defec-
tive or not. 4) They generate high complexity in the config-
uration and lack of flexibility for analyzing changes in parts
design. The issues outlined above show that AVI remains a
problem open to the development of new applications.

In many AVI systems the use of one image to carry out
quality inspection is sufficient. However, in other cases where
the signal-to-noise ratio is low, the identification of realflaws
with little contrast implies the appearance of numerous false
alarms. It is precisely in these cases where multiple views
can improve the inspection performance in the same way a

human inspector uses his sight to see multiple parts of an
object to evaluate its quality.

In this paper we aim to exploit the redundant informa-
tion from multiple views that contain corresponding parts
of the object. The information captured from different view-
points can reinforce the diagnosis when a single image is
insufficient. In order to discriminate real flaws from false
alarms our system tracks every possible flaw. Only real flaws
can be successfully tracked along an image sequence. A
real flaw entails a spatio-temporal relation in different views
where it appears while a false alarm corresponds to a ran-
dom event allowing us to distinguish real flaws from other
artifacts. Based on this observation, we propose a three-step
methodology for detecting real flaws in uncalibrated image
sequences of aluminum wheels: segmentation of potential
flaws, computation of corresponding points, and tracking of
potential flaws with intermediate classifiers. Similar ideas
have been presented in [4, 5, 29, 36, 41]. The main differ-
ences between this contribution and those works lie in the
fusion of multiple view geometry and a statistical analysis
of each flaw aiming to reduce the number of false alarms
while simultaneously improving the true flaws detection in
correspondence.

It is important to highlight that our method does not re-
quire a calibration process. In general, the calibration pro-
cess is difficult to carry out in industrial environments dueto
vibrations and random movements that vary with time. The
vibrations of the imaging system induce inaccuracies in the
estimated parameters of the multiple view geometric model.
Thus, the calibration is not stable and the imaging system
must be re-calibrated periodically. In many cases it might
be an extremely complicated procedure for real-time appli-
cations and manufacturing systems that cannot be stopped
temporarily for calibration purposes [36].

The rest of the paper is organized as follows: Section 2
includes a brief discussion of automatic multiple visual in-
spection; Section 3 explains our proposed method for uncal-
ibrated image sequences; Section 4 shows the experimental
results; and finally, Section 5 presents the conclusions and
future work.

2 Automatic Visual Inspection

Currently, one of the most widely used flaw detection sys-
tems in industry is the X-ray inspection, extensively used by
the automotive and aerospace industry, for detecting flaws
like: porosity, cracks, corrosion, inclusions, debris, bubbles,
and thickness variations, among others [2,15,34]. It is com-
monly used because the X-ray attenuation surrounding the
flaws is less (or more). The use of X-rays exploits the fact
that most material flaws are not visible. However, even in
radioscopic images the signal-to-noise ratio (SNR) is low,
the flaw signal is slightly greater than the background noise
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Fig. 1 Top: Example of a radioscopic sequence of five images after the
segmentation step. Bottom: Example of false alarms and flaws, called
potential flaws at this stage.

meaning that the identification of real flaws with poor con-
trast can involve detection of false alarms as well.

Motivated by (human) visual inspections that are able
to differentiate between flaws and noise by looking at the
objects being tested in motion, a new method of automated
inspection was developed using sequences of multiple im-
ages [29]. The new inspection methodology calledAuto-
mated Multiple View Inspection(AMVI) uses redundant views
to perform the inspection task. This novel methodology is
opening up new possibilities in the inspection field, mainly
by taking into account the useful information in the corre-
sponding different views of potential flaws in the test object.
The main idea is to consider as false alarms those poten-
tial flaws that cannot be tracked in a sequence of multiple
images. Therefore, two or more views of the same object
taken from different viewpoints can be used to confirm and
improve the diagnosis made by analyzing only one image.
AMVI has been developed under two schemes: calibrated
and uncalibrated. The calibrated scheme uses a 3D calibra-
tion object to estimate corresponding points [29]. Alterna-
tively, the uncalibrated scheme automatically establishes the
correspondences from the information contained in the im-
ages through a robust correspondence system [4] (see Fig.2).
These steps are equivalent to the work done by an inspector.
First, all the possible regions that might contain flaws (or
potential flaws) are detected. Second, because of the large
number of false alarms that can occur in the identification
step, the corresponding positions that each flaw might have
in the following views are analyzed, using multiple view
tracking (see Fig.1). Both methods share the following two
steps:identificationandtracking.

Identification aims at detecting all the anomalous regions
or potential flaws in each image of an object’s motion se-
quence, without a priori knowledge of its structure. There
are two general features used to identify them: i) a flaw is
considered as a connected subset in the image, ii) the differ-
ences between the gray levels of the flaw and its neighbors
is considerable. Although there are a lot of false alarms de-
tected by this process, the detector has the following advan-

Table 1 Features extracted from the identification step

Symbol Feature and Description
A Area: Number of pixels that belong to the region
G Mean of the grey: Mean of the grey values that belong

to the region [30]
D Mean of the second derivative: Mean of the second

derivative values of the pixels that belong to the bound-
ary of the region [30]

F1 Crossing line profiles: The grey level profiles along
straight lines crossing each segmented potential flaw
in the middle. The profile that contains the most sim-
ilar grey levels in the extremes is defined as the best
crossing line profile (BCLP). Feature F1 corresponds
to the first harmonic of the fast Fourier transformation
of BCLP [26]

Kσ Contrast: Standard deviation of the vertical and hori-
zontal profiles without offset [30]

r High contrast pixels ratio: Ratio of number of high
contrast pixels to area [27]

tages: i) the same detector is applied to all the images; ii)
it allows for the identification of potential flaws regardless
of the position or the structure of the object under study; in
other words, without a priori knowledge of the design of the
structure; iii) the detection of real flaws is very high (bet-
ter than 90%)1. The process that follows extracts features
of each potential flaw after identifying these regions in the
previous procedure. This information makes it possible to
determine whether a flaw is corresponding in the multiple
view analysis, according to the new intermediate classifica-
tion method.

Tracking aims at “chasing”, in subsequent images of a
sequence, potential flaws detected in the first step using the
positions forced by the geometric restrictions in multiple
views [18]. If a potential flaw continues through an image
sequence, it is identified as a real flaw and the object is clas-
sified as defective. However, if a potential flaw does not have
a correspondence in the sequence, it will be considered as a
false alarm (details in the segmentation in Fig.1). A similar
idea is also used by radiologists that analyze two different
X-ray views of the same breast to detect cancer in its early
stages. Thus, the number of cancers flagged erroneously as
well as missed cancers may be greatly reduced (see for ex-
ample Kita et al. [21], where a novel method that automat-
ically finds correspondences in two different views of the
breast is presented).

3 Proposed Method

In this section we provide an explanation of the stages in the
uncalibrated AMVI process with intermediate classifiers. The
proposed scheme has four major steps (A, B, C and D) de-
tailed in Fig.2. They correspond to the following stages: (A)

1 See [26] for details on the computation of the segmentation algo-
rithm.
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Fig. 2 General block diagram of the Uncalibrated Automatic Multiple View Inspection (AMVI) method with the three phases: Identification,
Robust Control Point and Tracking of potential flaws in two and three views with the Intermediate Classifier Block (ICB) method.

identification of potential flaws, (B) extraction of control
points, (C) tracking, and (D) intermediate classifier block.

A) Segmentation of potential flaws:Numerous investiga-
tions have been carried out to segment flaws depending on
the product analyzed [3, 26, 31, 35]. Here we used the seg-
mentation and feature extraction method, described in [26],
with the aim of identifying multiple regions which may cor-
respond to real flaws. In particular, the segmentation algo-
rithm used is able to detect most real flaws as well as numer-
ous false alarms. The process consists of the following, each
potential flaw extracts a set of measurements (described in
Table 1) and stores them in a normalised feature vector. For
instance, letmi

a = [xi
a,y

i
a,1] be the centre of mass stored in

homogenous coordinates of the segmented regioni in thea-
th view, and letvi

a be the feature vector of the regioni in the
a-th view. As a result, numerous potential flaws appear as
observed in the segmented image (Fig.1).

B) Robust control points:

As stated before, our final goal is tracking real flaws in
an image sequence. For this purpose, accurate correspond-
ing points between every pair of views are required. In gen-
eral, the estimation of control points can be solved by var-
ious mechanisms that use the intrinsic information of the
structures after a process of segmentation, edges extraction,
normalization, and smoothing [24, 38]. In general, there are
two curve alignment categories: methods based on rigid trans-
formations [43] and methods based on non-rigid deforma-
tion [9]. First, methods based on rigid transformations de-
termine the control points by estimating the rotation, lineal
displacement, and scaling parameters [24]. However, due to
the rigidity assumption they are sensitive to occlusions, de-
formations, articulations, perspective projections, andother

variations of the edges [38]. Second, methods based on non-
rigid deformations try to match one curve over the other.
The goal is minimizing a function of elasticity through the
transformation of the curve flexion, orientation or stretching.
Generally, this transformation is not invariant under rotation
and scaling [16], it is very sensitive to noise because it is de-
fined in terms of the curvature, and it requires the evaluation
of second order derivatives [38].

Our investigation proposes a simple and effective curve
alignment method by minimizing the Pearson’s correlation
coefficient using an isometric transformation between two
curves. We use this scheme because in the analysis of man-
ufactured products the object being analyzed is usually not
deformable. This premise justifies the use of a rigid trans-
formation method with which, given a rotation and a lin-
eal displacement, it is possible to estimate a correspondence
between the object’s control points. However, due to the ob-
ject’s rotation, some regions can remain occluded, and there-
fore the proposed system must consider that only some re-
gions retain this transformation. The proposed robust system
of control points consists of two stages that are detailed be-
low: matching of regions, and matching of control points.

B.1) Matching of regions:This consists of establishing cor-
respondences between regions of each view and not between
control points. The designed process is composed by four
stages: First, segmentation of those regions in which the in-
tensity of the object is distinguishable from the background
by using Otsu’s method [17] (Fig.3a). Second, extraction
of a set of features for each segmented region. This con-
sists of extracting the moments of Flusser-and-Suk [39] of
each region in three views. Third, determination of a region-
correspondence using the features extracted before by relat-
ing those regions with greater similarity. The similarity re-
lation is fulfilled when two or three regions have little vari-
ation in their normalized features according to the Euclidean
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distance metric (Fig.3b). Fourth, smoothing the edges of each
region in correspondence, in order to decrease the noise of
each curvature. For that we calculate the perimeter of each
segmented region and generate a list in a parametric form as
Zs = [xs,ys], wheres = 0, . . . ,L− 1 is the index of the list
of pixels ordered in a turning direction, andL is the num-
ber of pixels of the region’s perimeter. Using this parametric
form, we generate the Fourier descriptors, transforming the
Zs coordinates into a complex valueus = xs+ j ·ys. This sig-
nal with periodL is transformed into the Fourier domain by
means of a discrete Fourier transform (DFT):

Fn =
L−1

∑
s=1

us ·e
− j · 2π·s·n

L

The modulus of the complex Fourier coefficients describes
the energy of each descriptor. Therefore, if we choose the
highest energy coefficients (above 98%) and return to real
space with the inverse discrete Fourier transform (IDFT) we
get a smoother curve with less noise. This transformation
produces the same number of points as the original curve.
Likewise, the spacing between the original points remains
constant. However, when applying the elimination of some
Fourier coefficients, the original curve is transformed into a
new curveCs = [x′s,y

′
s], where,Cs 6= Zs.

B.2) Matching of control points: The estimation of control
points is a process in which the correspondence of pairs-
points on the border of a region is established (Fig.3c). Us-
ing Fourier procedure as described above, we define a curve
C1 corresponding to a region in the first view, and a curveC2

corresponding toC1 in the second view. Both curves do not
have the same length because they correspond to the perime-
ter of corresponding regions. However, these regions have
an isometric transformation, and in cases of occlusion the
curves will have different sizes. For both curves, to keep the

(a)

(b)

1 2 3

1 2 3

1 2 3

(c)

Fig. 3 Matching of regions: (a) Segmentation of regions in a sequence
by Otsu’s method. (b) Correspondence between regions according to
a similarity criterion between the extracted features. (c)Matching of
control points on the border (i.e., the curve) of a region.

same distance and to be aligned, it is necessary to select a
section of equal length from each list. LetP, a section of
curveC, be such thatP = C(δ ), whereδ = [si , · · · ,sj ], for
i, j ∈ [1, · · · ,n]. In this way there is a sectionP1 in the first
view that has the same length as sectionP2 in the second
view. These sections of the curve do not necessarily have
a correspondence, and for that we define a shift operator
Θ(P,λ ) that displaces the listP by λ positions in a turning
direction. OperatorΘ uses the function ”mod” (modulus af-
ter division) to determine theλ relative positions that listC,
of lengthP, must turn.

Using the above definitions, we implemented an align-
ment functionµ(Ω) as the maximization of the Pearson’s
correlation coefficientρ(α,β ) [13] between the isometric
transformation of a section ofP1, with the shift of sectionP2

with a jumpλ , composed by four parametersΩ = {θ ,∆sx,∆sy,λ}

µ(Ω) = |1−ρ ([R,t][P1],Θ(P2,λ ))| → min (1)

where,

R=

[
cosθ −sinθ
sinθ cosθ

]
, t =

[
∆sx

∆sy

]
(2)

The minimization ofµ(Ω) must findΩ parameters to
estimate an alignment between sectionsP1 andP2. The main
advantage of this function is that it does not require a perfect
alignment because the correlation coefficient takes a maxi-
mum if the displacement is linear. Another advantage is that
curvesP1 andP2 are open, the alignment determines only
sections that are corresponding, allowing control points to
be obtained for curves that have partial occlusion in corre-
sponding regions. Also, the use of the parameterλ allows
finding a position relation for curveC2 with P1, and in this
way, while curveP2 adjusts its shift, curveP1 adjusts its lin-
eal displacement and rotation angle to become aligned.

C) Tracking of potential flaws: In the previous steps we
have segmented all potential flaws along an image sequence
and we have established the corresponding points in a se-
quence. We now turn to the problem of separating real flaws
from false alarms. The essential point is that only real flaws
can be tracked along an image sequence. A real flaw entails a
spatio-temporal relation in different views where it appears,
while a false alarm corresponds to a random event.
C.1) Two views:

If a potential flawmi
a in view a is actually a reali-flaw

it must have a corresponding pointm j
b in another consec-

utive view b where a potential flawj was also segmented.
According to theprinciple of multiple view geometry[18],
pointsmi

a andm j
b are in correspondence if matrixFa,b exists

such that
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m j⊤
b ·Fa,b ·m

i
a = m j⊤

b ·




f1 f2 f3
f4 f5 f6
f7 f8 f9



 ·mi
a = 0 (3)

whereFa,b is known as the fundamental matrix of the pro-
jection of pointsmi

a andm j
b, in homogenous coordinates as

[xi
a,y

i
a,1]⊤ and[x j

b,y
j
b,1]⊤, respectively. Once the set of cor-

responding positions has been generated in both views, we
use the method proposed by Chen et al. [7] to make an ini-
tial estimation of the fundamental matrix. For the sake of
completeness, we briefly describe the Chen’s method below.

The method proposed by Chen et al. is based on choos-
ing a subset of candidate points by exploiting the fact that
the rank of the fundamental matrix is two and the value of
the epipolar restriction is zero (m j⊤

b ·Fa,b ·mi
a = 0). Based

on this, it is possible to define the fundamental matrix with-
out losing generalization by means of a lineal combination
of its values, where it is only necessary to estimate four pa-
rametersΓ = {α,β ,α ′,β ′} according to

f3 = −α ′ f1−β ′ f2

f6 = −α ′ f4−β ′ f5

f7 = −α f1−β f4

f8 = −α f2−β f5

f9 = −α ′α f1−α ′β f4 + β ′α f2 + β ′β f5

(4)

Using the above parameters and the point correspon-
dences detected in the control point step, we define a new
problem asA · f = 0, wheref = [ f1, f2, f4, f5]⊤. Since the
values off are not null, only det(A) = 0 is possible. Like-
wise, to find a solution of matrixA, theΓ parameters are
defined randomly. Thus, it is necessary to build a matrixA
as

A =





(x1−α)(x′1−α ′) . . . (xn−α)(x′n−α ′)

(x1−α)(y′1−β ′) . . . (xn−α)(y′n−β ′)
(y1−β )(x′1−α ′) . . . (yn−β )(x′n−α ′)

(y1−β )(y′1−β ′) . . . (yn−β )(y′n−β ′)





⊤

4×N

(5)

Since the matrixA is composed byN stereo correspon-
dences, Chen proposed that using only a combination of four
restrictions will be enough to seek a fundamental matrix. For
this reason, we define a row vectorBi of the matrixA as

Bi(α,β ,α ′
,β ′) =





(xi −α)(x′i −α ′)

(xi −α)(y′i −β ′)

(yi −β )(x′i −α ′)
(yi −β )(y′i −β ′)





⊤

. (6)

Then, choosing randomly four restrictions(i, j,k, l) be-
tweenN rows, the problem that follows must fulfill the fol-
lowing condition

Bi jkl = det
([

Bi B j Bk Bl
]⊤)

= 0 (7)

where rows(i, j,k, l) belong to the combinatorial subset of
R= CN

4 . As we stated before, to estimate theΓ parameters
it is necessary to solve the optimization problem by looking
for four Bi restrictions such that (7) is a minimum according
to

(α,β ,α ′
,β ′) = argminα ,β ,α ′,β ′

N

∑
1
|Bi jkl | (8)

Next, replacing theΓ parameters in (5) allows us to
compute the vectorf by decomposing into singular values
[S,V,D] = svd(A).

Thus, the solution of (5) corresponds to the last column
vectorD. Finally, theΓ parameters obtained in (8) are re-
placed in (4) defining an initial solution ofFa,b. In our re-
search, we combine this procedure with the RANSAC algo-
rithm, thus the solution with the largest number of inliers is
used to compute the fundamental matrix.

The next procedure is to estimate the epipolar line based
on previous results. More formally, letl ia be the epipolar line
defined as the product between the fundamental matrixFa,b

and the pointmi
a as

l ia = [l ia,x, l
i
a,y, l

i
a,z] = F⊤

a,b ·m
i
a , (9)

wherel ia is the epipolar line of flawi in view b, mi
a is the

centre of mass of flawi in view a and[l ia,x, l
i
a,y, l

i
a,z] are the

coefficients of the epipolar line. Once the epipolar linel ia
has been generated, it is necessary to determine the distance
between the corresponding flaw in viewb. This distance
is determined through thepractical bifocal constraint[18].
Given that the epipolar constraint is applied to points and not
to regions, we consider the centre of mass of each potential
flaw to be a corresponding point between pairs of images.
Using the epipolar linel ia, we identify the correspondence
associated with the potential flawi as the potential flawj in
view b that satisfies the constraints

|m j⊤
b Fa,bmi

a|√
(l ia,x)

2 +(l ia,y)
2

< ε1 (10)

for smallε1 > 0. If this constraint is fulfilled, a potential flaw
is thus found in two views. In this case it could be considered
a real flaw with a bifocal correspondence. Otherwise, it is re-
garded as a false alarm. An example is shown in Fig. 4. The
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Fig. 4 Epipolar line generated from the fundamental matrix: a) First
view. b) Segmentation of a potential flaw in the first view. c) Intersec-
tion of the epipolar line in the second view with one or more corre-
sponding potential flaws.

same procedure is applied to every potential flaw in viewa
that is to be found in viewb. It is important to recall that the
precision of the fundamental matrix allows the correct deter-
mination of potential flaws along the length of the epipolar
line. However, if the fundamental matrix is not robust, the
epipolar line will be incorrect and the subsequent trifocal
tensor process will fail
C.2) Three views:Trifocal analysis allows modeling all the
geometric relationships in three views, and is independent
of the structure contained in each image [18]. The tensor,
a matrix structure similar to the fundamental matrix, only
depends on the movement between images and the internal
parameters of the cameras. Its main advantage is that it can
be calculated from the correspondences of the images with-
out any a priori knowledge of the movement or calibration
of the object. This characteristic justifies it because the esti-
mation of the fundamental matrix does not always eliminate
all false positives.

Based on previous results, to confirm that a bifocal cor-
respondence indeed represents a real flaw, we try to discover
a new correspondence using a third view with the help of
trifocal tensors. LetT = (T rs

t ) be a 3×3×3 matrix repre-
senting the trifocal tensor that encodes the relative motion
among viewsa,b,c.2 Then, we can estimate the hypotheti-
cal position of a flawk in a third viewc using the correspon-
dencesmi

a,m
j
b and the tensorT as3

m̂k
c =

1

mi⊤
a (T13

· −x j
bT33

· )




mi⊤

a (T11
· −x j

bT31
· )

mi⊤
a (T12

· −x j
bT32

· )

mi⊤
a (T13

· −x j
bT33

· )



 . (11)

We compare the estimated position with all potential flaws
of view c, regarding the potential flawk as a real flaw if

‖m̂k
c−mk

c‖ < ε1 , (12)

2 See [18] for details on the computation of the trifocal tensors.
3 The estimated projection in the third view can be improved apply-

ing the point-line-point method proposed in [18, pp.373].

for small ε1 > 0. If this constraint is fulfilled, we take
the potential flaw to be a real flaw, since it complies with the
correspondence in three views. Should the potential flaw in
the third view not coincide with the projection of the tensor,
it is discarded, as it does not fulfill the trifocal condition. In
general, given that the trifocal condition is analyzed for the
sequences that fulfill the bifocal condition, we reduce the
number of false positives generated in two views.

D) Intermediate Classifier Block method:
The goal of the ICB method is to eliminate those corre-

spondences between potential flaws that have a low proba-
bility of being true positives. The ICB method uses the clas-
sifier ensemble methodology [37], in which multiple linear
classifiers do the classification and then, through the major-
ity of votes technique, a final decision is made. According to
the multiple view hypothesis, the key idea is to consider as
false alarms those potential flaws that cannot be tracked in
a sequence of multiple images. Nonetheless, there are false
alarms that fulfill the above condition and must be elimi-
nated in the multiple views analysis using a partial elimina-
tion classification system. The ICB method has as input the
distribution of two classes: flaws (F) and false alarms (FA).
According to this distribution, the classifier must determine
the region of space where there are actually flaws only start-
ing from pointθF , and false alarms fromθFA (Fig.5a). Once
these regions are extracted only flaws or false alarms (which
the classifier cannot verify with high probability the classto
which they belong) are assigned to a new class called Poten-
tial Flaw (PF) (Fig.5b). As a result, the ICB method gener-
ates the separation of three classes (F, FA and PF). Accord-
ingly, flaws or false alarms contained in the PF region are
used as new potential flaws in the following step of the mul-
tiple views analysis. This reduction avoids the analysis of
the trajectories of all flaws in correspondence; consequently,
improving the performance. The simplest form of the previ-
ous classifier is reflected in the linear separation of the F, FA
and PF regions, using the V1 and V2 features (Fig.5b). The
methodology used by the ICB is composed by a series of
stages detailed below (see Fig.6).
D.1) Assessment method of the ICB classifier:Our prob-
lem falls within the framework of supervised classification
problems, since the class which each potential flaw belongs
to is known. Using this information, the classification model
is designed by means of the cross-validation method. To
compare the results of the various configurations of the clas-
sifier we use the ROC curve [14]. The main advantage of
the ROC curve is that it allows the comparison to be inde-
pendent of the sample. For this research, the classes are a
set of registers with flaws and false alarms, we determine
the sensitivity(Sn) and 1-specificity(1−Sp) asSn = TP

TP+FN

andSp = FP
FP+TN , where TP is the number of true positives

(classified correctly as flaws), TN is the number of true neg-
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atives (classified correctly as false alarms), FP is the number
of false positives (classified incorrectly as flaws), and FN is
the number of false negatives (classified incorrectly as false
alarms). The objective is for the sensitivity to be maximum
(100%) and simultaneously the 1-specificity to be minimum
(0%), this way the classifier guarantees an ideal classifica-
tion for two classes. In practice this is difficult to achieve
because it depends on the classifier’s internal parameters
which can vary with respect to the noise existing in the data.
D.2) Selection of features:The features selected by the ICB
classifier are determined automatically using the informa-
tion contained in each potential flaw, each of which has an
associated feature vectorv. Each feature vector is composed
of twelve measures extracted previously in the segmentation
step (see details in Table 1). Here we used the Take-L-Plus-R
feature selection algorithm [12] to determine a combination
of features that separate the classification space. The objec-
tive of this algorithm is to determine the best features that
allow greater separation between the classes space4.

In the multiple views analysis above, we combined mul-
tiple flaws only by means of a geometric analysis. In this
next step we carry out a fusion of its features to seek a sep-
aration of its classes. For instance, letvi

a be a feature vector

4 As a criterion function, we used the Fisher discriminant [42].
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of flaw i in view a and letv j
b be a feature vector of flawj in

view b. If these two regions are corresponding, in theory the
distance of their features should be short, since both regions
are the same in two views, otherwise if there are false alarms
the distance between them should be longer. With this sim-
ple criterion we define a unique vector of featuresvi j

ab that

relates two regions for the bifocal case andvi jk
abc which re-

lates three regions in the trifocal case as

vi j
ab =

[
(vi

a−v j
b)

]

vi jk
abc =

[
(vi

a−v j
b)(v

i
a−vk

c)(v
j
b−vk

c)
] (13)

For the next analysis, and for simplicity, we define ma-
trix v asv ≡ vi j

ab ≡ vi jk
abc, because the feature vector contains

the relations between two and three regions and both elimi-
nation processes are independent (see ICB process in Fig.2).
D.3) Linear classification: We use a linear discriminative
analysis (LDA) classification [12] that allows finding the hy-
perplanes that best separate the solution space. For that, the
classification process must fit the following linear equation

wT ·v+w0 > 0, (14)

wherew = Σ−1
w · (v̄1 − v̄2) are the hyperplane parameters,

Σw is the interclass covariance matrix, andv corresponds to
the feature vector chosen earlier. Finally, the valuew0 for
two classes is determined according to the mean of features
v̄1 and v̄2 and the probabilities of each classpe1 and pe2

according to

w0 = −
1
2
· (v̄1 + v̄2) ·Σ−1

W · (v̄1− v̄2)− log

(
pe1

pe2

)
(15)

Once an initial solution is obtained for the vectorw, the
optimization problem tries to fit the hyperplanes so that (16)
is the maximum, this ensures that we are obtaining a high
performance of(Sn) and(1−Sp) for each sub-selection of
its features.

{w,w0} = argmax{Sn(w,w0)} s.t. Sp(w,w0) = 1 (16)

This problem has been solved by the Nelder-Mead Sim-
plex method [23]. Then the information from the selected
straight lines and features is used to evaluate the perfor-
mance of the classifier on the test data.
D.4) Joint classification :

The linear discrimination analysis model has been used
together with the cross-validation technique. This way the
optimization process generated by each combination of fea-
tures generates, as a result, a set of straight lines specific
for each combination. Finally, this model is used for the
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testing data by the classifier, therefore a set of weak clas-
sifiers makes it possible to generate a robust classification.
For example, let us assume that we have used a setC consist-
ing of three features in the training phaseC = {V1,V2,V3}.
The separation between them generates a three-dimensional
volume bounded by the cuts of the two-dimensional sep-
arations, containing only potential flaws (PF) (Fig.7).This
three-dimensional volume generated from the combination
of the two-dimensional features[V1,V2], [V1,V3] and[V2,V3]
contains potential flaws. Conversely, the space outside the
three-dimensional volume could be flaws or false alarms,
depending on the position in which the hyperplanes are pro-
jected.

Our final classification method is based on the use of
multiple linear separation models. The objective of the lin-
ear separation is to find a dividing line for two classes, but
we use the same LDA algorithm with two purposes: First, to
find the best separation line that minimizes the FPs subject
to Sn = 1 defined assFP. Second, to find the best separation
line that minimizes the FNs subject to aSp = 0, defined as
sFN (see slopes in Fig.5b). These two separation lines gen-
erate a bi-dimensional separation space, and the total set of
combinations of features generates a hyperplane.

Firstly, we calculate the separation line set in order to
evaluate the joint classifier in the testing data for each com-
bination pair. Thus, for the Vm,Vn combination we generate
a linear separation between the straight linessFP

m,n andsFN
n,n.

More formally, letPFm,n, FAm,n andFm,n be the space gen-
erated by the linear intersection between the featuresm and
n, defined as

PFm,n =
[
v 1

]
·sFP

m,n < 0∧
[
v 1

]
·sFN

m,n > 0 = {0,1}

FAm,n =
[
v 1

]
·sFP

m,n < 0∧
[
v 1

]
·sFN

m,n < 0 = {0,1}

Fm,n =
[
v 1

]
·sFP

m,n > 0∧
[
v 1

]
·sFN

m,n > 0 = {0,1}

(17)

The next step is to verify the classification for each fea-
ture vectorv with unknown values. To that end, letN = CP

2
be the number of possible combinations of a feature vector
P. For every vector of lengthP we generateN combinations
of two features, therefore the classification result requires a
set ofN results, and then by simple majority vote, the final
classification is evaluated. Let us assume thatv1 is the first
feature vector and we want to find its classification. Its result
for each class{PF,FA,F} is defined by

M(v1) =





PF1,2 FA1,2 F1,2
...

...
...

PFm,n FAm,n Fm,n
...

...
...

PFN−1,N FAN,N−1 FN,N−1





⊤

N×3

(18)

Table 2 Performance of the Uncalibrated Tracking

Step Flaws in False Alarms Rate of Rate of
sequence in sequence Real Flaws False Alarms

2-Views Track 190 198 100% 51.0%
ICB-2 151 94 100% 24.2%
3-Views Track 137 45 100% 11.6%
ICB-3 18 17 100% 4.4%

where the matrixM is the binary outcome of multiple partial
classifications for the feature vectorv1. Finally, the classifi-
cation of the matrixM(v1) is defined as

p(class|v1) = max
∑N

1 M(v1)

∑N
1 ∑3

1M(v1)
(19)

This process is carried out for each of the testing vectors.
In our analysis, we consider the combination of two to seven
features. This is because more than seven features turn the
performance of the ICB down to zero, and therefore it is not
possible to filter more false alarms. However this number
can vary as a result of the linear classification inserted in
each ICB.

4 Experimental results

This section presents the results of experiments carried out
on a sequence of 72 radioscopic images of aluminum wheels
(see some of them in Fig.8). The dimensions of the wheel
are 470 [mm] diameter and 200 [mm] height. The image size
is 572× 768 pixels with a dynamic range of 8 bits. There
are twelve known real flaws in this sequence. Three of these
flaws were detected by human visual inspection ( /0= 2.0∼

7.5 [mm]) however the remaining nine flaws (small holes
generated by a drill ( /0= 2.0∼ 4.0 [mm]) in positions mak-
ing their detection difficult) were not detected. A pattern of
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V
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V
2

V
3

PF

PF

PF

V
1

V
2

V
3

Fig. 7 Three dimensional representation of the ICB classification
method.
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1 [mm] in the middle of the wheel is projected in the X-ray
projection coordinate as a pattern of 2.96 pixels in the image,
i.e., the flaws are very small. In addition, since the signal-to-
noise ratio in our radioscopic images is low, the flaw signal
is slightly greater than the background noise, as illustrated
in Fig.8. In our experiments, the mean gray level of the flaw
signal ranged from 2.4 to 28.8 gray values with a standard
deviation of 6.1. Analyzing a homogeneous background in
different areas of interest, we obtain noise within±13 gray
values with a standard deviation of 2.5. Due to the reasons
stated above, the segmentation of real flaws with poor con-
trast can also involve detection of false alarms.

We separated the analysis into three steps. (1. Identifi-
cation) Potential flaws are automatically identified in each
image of the sequence using a single filter without a priori
knowledge of the object structure (Fig.8b). The result of the
identification generates a data base that contains 424 regis-
ters with twelve features of the total potential flaws detected
in the sequence. From them, 214 are real flaws, which cor-
respond to the twelve real flaws mentioned above, and 210
registers are false alarms that must be reduced. (2. Tracking)
In this step we separate the analysis into two phases: a) the
detection of pairs of flaws using the estimation of the funda-
mental matrix in two views, through the epipolar constraint;
b) using the previous results, we re-projected the pairs of
potential flaws in the third view using the trifocal tensor es-
timation. (3. ICB method) Classifiers are inserted into two
and three views to filter potential flaws between the views,
according to the general model proposed in Fig.2. All the
phases are detailed below.

4.1 Performance with two views

The first phase is to assess the performance of the algorithm
in two views using the bifocal method. This consists of de-
termining the corresponding flaws between two images in a
sequence through the search for flaws along the epipolar line
(Fig.8c). The results indicate that the model detects 100%
of the real flaws that are corresponding in two views (Table
2, 2-Views Track). This validates the assumption of corre-
spondence between the position of real flaws and implies
that automatic detection with the fundamental matrix allows
the detection of corresponding flaws that are contained on
the epipolar line. There is, however, a large number of false
alarms in the sequence (198/388=51%), which must be re-
duced using a third view.

4.2 Performance with three views

After completing the matching of possible pairs of flaws in
both images, we extend the detection of flaws to the third
image in the sequence (Fig.8d). In this case the performance

1 2 3

1 2 3

(a)

(b)

(c)

(d)

1 2 3

1 2 3

Fig. 8 Generalized flaw tracking process in one sequence of three
views: a) Identification of potential flaws. b) Searching fora match
two views with the fundamental matrix. c) Searching for a match in
three views with the trifocal tensor. d) Final detection, the false alarms
are eliminated without discriminating real flaws.

remains at 100% of real flaws detected in the sequence, how-
ever, it has not been possible to eliminate all false alarms
(Table 2, Rate of False Alarms). Furthermore, the ICB method
in two and three views has allowed the detection of a large
part of the real flaws (F) and false alarms (FA) with high
probability, allowing them to be separated from the multi-
ple views analysis. Thus, in two views the reduction of false
alarms with ICB-2 reaches 24.2%, and with ICB-3 it reaches
4.4%. These results indicate that the proposed method has
generated a sustained reduction of potential flaws (PF) in
the sequence.

4.3 Performance of ICB

The results indicate a clear correlation between the perfor-
mance of the ICB method for two views and the number of
features chosen. By using the five best feature combinations,
the performance of the classification is ideal, but there is a
clear decrease in the number of false alarms extracted by the
ICB method (Table 3. 2 Views). For example, in the case
of combining the five best features, only 17.3% of the to-
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tal potential flaws in correspondence are extracted, leaving
82.7% which is then transferred to the following matching
block in three views. In the case of three views, the number
of correspondences is drastically reduced because the cor-
respondence of a false alarm in three images has a lower
probability of occurrence. The highest performance results
occur when the six best features are combined by means of
the Take-L-Plus-R selection process included in each ICB
(Fig.6).

With respect to real-time capabilities, we tested our method
in two ways, with and without ICB. First, with ICB, the re-
quired computation time to process a sequence of three im-
ages, was in average 38.3 [s], with a remainder of 4.4% of
false alarms. Second, without ICB, using the same sequence,
the time was in average of 31.1 [s]5, with a remainder of
32.3% of false alarms. These results are very promising be-
cause the ICB method can filter the majority of false alarms
in sequence, although it did require more time. We want to
clarify that the ICB method follows a classification ensem-
ble methodology to filter false alarms; without ICB each po-
tential flaw is tracked in two and three views, thus the num-
ber of tests in multiple views is increased.

4.4 Comparison with other methods

Finally, we present a summary of the performance obtained
with the calibrated and uncalibrated AMVI method (Table
4). For comparison purposes, we show the performances
carried out with the same sequence of X-ray images de-
signed in [29]. The given performances correspond to the
‘true positives’ and ‘false positives’. The true positivesare
the percentages of flaws correctly detected in a sequence.
The false positives (or false alarms) correspond to the per-
centage of ‘non-flaws’ that have been classified incorrectly
as flaws. Current results indicate that it is possible to ob-
tain 100% of the real flaws in a sequence detected correctly.
These results have been generated in spite of the optical and
geometric perturbations and the low SNR level that corre-
sponds to X-ray images. However, false alarms remain in
the sequence and reducing them has not been possible. De-
spite the false alarms, our method has achieved better per-
formance than the system proposed by Pizarro et al. [36],
mainly because it is not necessary to carry out matching of
the potential flaws, only a tracking analysis. According to
the results generated in two and three views in [4], the ICB
technique has allowed a reduction of 8.7% in the correspon-
dence number in two views, and of 5.5% in the case of three
views with a 4.4% remainder, which has been impossible to
eliminate so far by geometric analysis.

5 The method was programmed in Matlab 7.0 under Windows XP
SP2 on a Pentium Centrino Duo/2 GHz

Table 3 Sensitivity and 1-Specificity performance of the ICB classi-
fier, and percentage of flaws reduction of ICB classifier

Views Features 2 3 4 5 6 7

2 Views
Sn 92.7% 95.6% 98.4% 100% 100% 100%

1−Sp 2.4 % 0% 0% 0% 0% 0%
ICB reduction 52.3% 49.5% 43.6% 17.3% 12.8% 10.3%

3 Views
Sn 95.8% 98% 96% 99.1% 99.1% 100%

1−Sp 25 % 16.7% 26.7% 22.2% 0% 6.7%
ICB reduction 81.6% 61.17% 79.7% 89.4% 75.3% 75.7%

Table 4 Comparison between different calibrated and uncalibrated
tracking techniques

Method Images Year and Analyzed True False
tracked reference Images Positives Positives

Calibrated
3 2002 [29] 70 100% 25%
4 2002 [29] 70 100% 0%
5 2002 [29] 70 83% 0%

Uncalibrated

2 2005 [28] 24 92.3% 10%
2 2006 [4] 70 100% 32.9%
3 2006 [4] 70 98.8% 9.9%
2 2008 [36] 70 86.7% 14%
2 2008new 70 100% 24.2%
3 2008new 70 100% 4.4%

5 Conclusions

Automated visual inspection remains an open question. Many
research directions have been exploited, some very different
principles have been adopted and a wide variety of algo-
rithms have appeared in literature on automated visual in-
spection. Although there are several approaches in the last
30 years that have been developed, automated visual inspec-
tion systems still suffer from i) detection accuracy, because
there is a fundamental trade off between false alarms and
missed detections; and ii) strong bottleneck derived from
mechanical speed (required to place the test object in the
desired positions) and iii) high computational cost (to de-
termine whether the test object is defective or not). In this
sense, Automated Multiple View Inspection offers a robust
alternative method that uses redundant views to perform the
inspection task. In this paper we have developed a new flaw
detection algorithm using an uncalibrated sequence of im-
ages. Using the new uncalibrated AMVI methodology, we
have designed a novel system based only on the spatial posi-
tions of the structures. The proposed approach uses the pro-
jection of the epipolar line, generated by the fundamental
matrix and the trifocal tensors in a robust manner, with the
purpose of building a motion model without a priori knowl-
edge of the object structure. The key idea of our strategy is
to consider as false alarms those potential flaws that cannot
be tracked in a sequence of multiple images. In this research
we have introduced the calculation of corresponding points
generated artificially through the maximization of the corre-
lation coefficient from two curves and the intermediate clas-
sifier block (ICB) method in order to filter false alarms. The
method was tested in a sequence of X-ray images of alu-
minium wheels but the methodology can be applied to other
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sequences as well by changing the segmentation and con-
trol point algorithms as we demonstrated in bottle inspection
system with multiple views in [6].

Our results indicate that it is possible to generate an au-
tomatic model for a sequence of images which represent the
movement between the points and regions they contain. This
way we can use as reference points the edges of the struc-
tures or areas, without loss of information, using a nonlinear
method. The main advantage of our model is the automatic
estimation of movement thus avoiding the calibration pro-
cess. Our future aim is to reduce the number of false alarms
by means of a method of final verification of the flaws in
correspondence, and an analysis of the ICB classification
method with other ensemble classification and probabilis-
tic techniques. Another possibility is to change the Fisher
Discriminant into another Linear Dimensionality Reduction
(LDR) technique inside of each ICB. That way we can max-
imize the Chernoff distance based in [1]. The essential idea
is to increase the distance defining linear class separability.
This will allow the separation of more false alarms and flaws
in each ICB. Thus, with less potential flaws in a sequence,
the process will be faster.
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