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Abstract The classic image processing method for flaw de-1 Introduction

tection uses one image of the scene, or multiple images with-

out correspondences between them. To improve this schem®yer the last 30 years the worldwide manufacturing mar-
automated inspection using multiple views has been deveket has faced heavy competition to produce higher quality
oped in recent years. This strategy’s key idea is to considggroducts while actively reducing prices. This has led tagre
as real flaws those regions that can be tracked in a sequeragvances in the technology required for automating produc-
of multiple images because they are located in positions didion processes but inspection and quality control problems
tated by geometric conditions. In contrast, false alarms (ohave yet to be fully resolved. Due to these gaps in the in-
noise) can be successfully eliminated in this manner, sincdustry, several automatic inspection techniques reptesen
they do not appear in the predicted places in the followarea of high interest and active research. Traditionaily, i
ing images, and thus cannot be tracked. This paper presergsection and quality control in manufacturing environnsent
a method to inspect aluminum wheels using images takehave been carried out by means of an intensive human vi-
from different positions by using a method callgtomatic  sual inspection inserted into different phases of the predu
multiple view inspectiofAMVI). Our method can be ap- tion processes [33]. The economic benefits represent some
plied to uncalibrated image sequences, therefore it is naif the main reasons this kind of inspection is used. The in-
necessary to determine optical and geometric parameters ngestment cost to install and develop a specialized machine
mally present in the calibrated systems. In addition, to imfor inspection tasks is very high compared to the cost of
prove the performance, we designed a false alarm reductiaraining a human operator. Also, human visual inspection
method in two and three views called Intermediate Classihas the great advantage of adapting to unforeseen sitgation
fier Block (ICB). The ICB method takes advantage of theand is flexible when faced with any change in the objects’
classifier ensemble methodology by making use of featurposition, orientation or shape. This is because human being
analysis in multiple views. Using this method, real flaws carhave high cognitive and sensory abilities that allow them to
be detected with high precision while most false alarms cagarry out complex reasoning and inferences while inspectin

be discriminated. the objects [40].
Various studies have analyzed the performance of hu-
Keywords Automated inspectiontracking- flaw detec-  man inspection and its main defects (e.g. [10, 11, 19, 32]).
tion - X-ray imaging- nondestructive testing. According to them, there is a clear consensus that human
inspection does not achieve 100% performance in the detec-
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inspection quality is not constant over time because it is dehuman inspector uses his sight to see multiple parts of an
pendent on fatigue and monotony caused by the work; (2)bject to evaluate its quality.

irregular, because it depends on the ability, experiende an In this paper we aim to exploit the redundant informa-
strategy for revision of each inspector; (3) slow, some fadu tion from multiple views that contain corresponding parts
tries have high production levels and require inspectian at of the object. The information captured from different view
high processing rate, however human inspection can requippints can reinforce the diagnosis when a single image is
more time because handling and observation tasks have lirmsufficient. In order to discriminate real flaws from false
iting factor, such as the speed of human operations; (4) tealarms our system tracks every possible flaw. Only real flaws
dious, because the inspection routine can be very repetitican be successfully tracked along an image sequence. A
which generates a lower concentration level due to the largesal flaw entails a spatio-temporal relation in differergws
number of objects that must be revised in a short periodiwhere it appears while a false alarm corresponds to a ran-
(5) hazardous, because in some environments such as wbm event allowing us to distinguish real flaws from other
der water inspection, the nuclear industry, and the chdmicartifacts. Based on this observation, we propose a thege-st
industry, human inspection can be inviable due to the higimethodology for detecting real flaws in uncalibrated image
risk inherent in those systems; (6) complex, the differenceequences of aluminum wheels: segmentation of potential
between a product with or without defects can be very subflaws, computation of corresponding points, and tracking of
tle, and that is not always easily distinguishable by a humapotential flaws with intermediate classifiers. Similar islea
operator; (7) inaccessible, in some cases even access to ti@ve been presented in [4, 5, 29, 36, 41]. The main differ-
object to be inspected can be very complex because of trences between this contribution and those works lie in the
size of the product. All of these factors have lead industry t fusion of multiple view geometry and a statistical analysis
gradually replace human inspection with automatic visuabf each flaw aiming to reduce the number of false alarms
inspection (AVI) methods which allow contact free inspec-while simultaneously improving the true flaws detection in
tions to be made of the object. correspondence.

Since the introduction of AVl methods in the early 1980s It is important to highlight that our method does not re-
[8,20], several systems for quality inspection have been su duire a calibration process. In general, the calibratiam pr

cessfully developed using different image processing-tectf€ss is difficult to carry outin industrial environments doie

ity ensuring high quality, reliability and consistency rsta vibrations of the imaging system induce inaccuracies in the
dards, i.e., rejecting most of the defective products and ac@Stimated parameters of the multiple view geometric model.
cepting all the defect-free products. AVI inspections nor-Thus, the calibration is not stable and the imaging system
mally require less time than inspections performed by huMust be re-calibrated periodically. In many cases it might
man operators. Malamas, et al. [25] and Kumar [22] havd€ an extremely complicated procedure for real-time appli-
presented extensive reviews of various AVI technologies aptations and manufacturing systems that cannot be stopped
plied to the manufacturing processes of different productéemporarily for calibration purposes [36].

such as electronic components, textiles, glass, mecHanica The rest of the paper is organized as follows: Section 2
parts, integrated circuits (IC), etc. Despite their adages, includes a brief discussion of automatic multiple visual in
AVI methods in general also have the following problems.SPection; Section 3 explains our proposed method for uncal-
1) They lack precision in their performance because of thédrated image sequences; Section 4 shows the experimental
imbalance between undetected flaws (false negatives) af@sults; and finally, Section 5 presents the conclusions and
false alarms (false positives). 2) They are limited by time future work.

the mechanical requirements for placing an object in the de-

sired position can be time_ c.onsuming. 3) They_ rquire high Automatic Visual Inspection

computer cost for determining whether the object is defec-

tive or not. 4) They generate high complexity in the config-cyrrently, one of the most widely used flaw detection sys-
uration and lack of flexibility for analyzing changes in gart temsin industry is the X-ray inspection, extensively usgd b
design. The issues outlined above show that AVl remains ghe automotive and aerospace industry, for detecting flaws
problem open to the development of new applications. ike: porosity, cracks, corrosion, inclusions, debrishbles,

In many AVI systems the use of one image to carry outand thickness variations, among others [2, 15, 34]. It iscom
quality inspection is sufficient. However, in other casegmh monly used because the X-ray attenuation surrounding the
the signal-to-noise ratio is low, the identification of réalvs  flaws is less (or more). The use of X-rays exploits the fact
with little contrast implies the appearance of numeroussfal that most material flaws are not visible. However, even in
alarms. It is precisely in these cases where multiple viewsadioscopic images the signal-to-noise ratio (SNR) is low,
can improve the inspection performance in the same way the flaw signal is slightly greater than the background noise



Symbol  Feature and Description
A Area Number of pixels that belong to the region

'v Table 1 Features extracted from the identification step
«
’ . 5

G Mean of the greyMean of the grey values that belong
to the region [30]
s D Mean of the second derivativdean of the second

v derivative values of the pixels that belong to the bound-
[y . ary of_the r_egion [30] _
ﬂaws\—a.‘f; clar e = Crossing line profilesThe grey level profiles along
straight lines crossing each segmented potential flaw
in the middle. The profile that contains the most sim-

Fig. 1 Top: Example of a radioscopic sequence of five images after th ilar grey levels in the extremes is defined as the best
segmentation step. Bottom: Example of false alarms and fleaited crossing line profile (BCLP). Feature F1 corresponds
potential flaws at this stage. to the first harmonic of the fast Fourier transformation
of BCLP [26]
Ko Contrast Standard deviation of the vertical and hori-
zontal profiles without offset [30]
meaning that the identification of real flaws with poor con- r High contrast pixels ratio Ratio of number of high
trast can involve detection of false alarms as well. contrast pixels to area [27]

Motivated by (human) visual inspections that are able

to differentiate between flaws and noise by looking at theiages: i) the same detector is applied to all the images; ii)
objects being tested in motion, a new method of automateg! 5j10ws for the identification of potential flaws regardies

inspection was developed using sequences of multiple i the position or the structure of the object under study; in
ages [29]. The new inspection methodology callato-  other words, without a priori knowledge of the design of the
mated Multiple View InspectidiAMV1) uses redundant views gy cture; iii) the detection of real flaws is very high (bet-

to perform the inspection task. This novel methodology iser than 90%). The process that follows extracts features
opening up new possibilities in the inspection field, mainlyof each potential flaw after identifying these regions in the
by taking into account the useful information in the corre-previous procedure. This information makes it possible to
sponding different views of potential flaws in the test objec yetermine whether a flaw is corresponding in the multiple

The main idea is to consider as false alarms those poteRjey analysis, according to the new intermediate classifica
tial flaws that cannot be tracked in a sequence of multiplgj;n method.

images. Therefore, two or more views of the same object Tracking aims at “chasing”, in subsequent images of a

taken from different viewpoints can be used to confirm andsequence, potential flaws detected in the first step using the
improve the diagnosis made by analyzing only one imagéyositions forced by the geometric restrictions in multiple
AMVI has been developed under two schemes: calibrategjos [18]. If a potential flaw continues through an image
and uncalibrated. The calibrated scheme uses a 3D Ca"bré‘équence, itis identified as a real flaw and the object is clas-
tion object to estimate corresponding points [29]. Alterna gjfied as defective. However, if a potential flaw does not have
tively, the uncalibrated scheme automatically estabtishe 5 correspondence in the sequence, it will be considered as a
correspondences from the information contained in the ims3se alarm (details in the segmentation in Fig.1). A simila
ages through a robust correspondence system [4] (see Fig-fea is also used by radiologists that analyze two different
These steps are equivalent to the work done by an inspectgg.ray views of the same breast to detect cancer in its early
First, all the possible regions that might contain flaws (Orstages. Thus, the number of cancers flagged erroneously as
potential flaws) are detected. Second, because of the larggs|| s missed cancers may be greatly reduced (see for ex-
number of false alarms that can occur in the identificatioramme Kita et al. [21], where a novel method that automat-

step, the corresponding positions that each flaw might havga|ly finds correspondences in two different views of the
in the following views are analyzed, using multiple view preast is presented).

tracking (see Fig.1). Both methods share the following two
stepsidentificationandtracking

Identification aims at detecting all the anomalous regions Proposed Method
or potential flaws in each image of an object’s motion se- _ . _ .
quence, without a priori knowledge of its structure. Therel this section we provide an explanation of the stages in the
are two general features used to identify them: i) a flaw idncalibrated AMVI process with intermediate classifietse T
considered as a connected subset in the image, ii) the-diffePr0P0sed scheme has four major steps (A, B, C and D) de-
ences between the gray levels of the flaw and its neighboi@iled in Fig.2. They correspond to the following stages: (A
is considerable. Although there are a lot of false alarms de- 1 gee [26] for details on the computation of the segmentatigo-a
tected by this process, the detector has the following advanithm.
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Fig. 2 General block diagram of the Uncalibrated Automatic Muéipiew Inspection (AMVI) method with the three phases: ltlécation,
Robust Control Point and Tracking of potential flaws in twal #imree views with the Intermediate Classifier Block (ICB)thwoel.

identification of potential flaws, (B) extraction of control variations of the edges [38]. Second, methods based on non-
points, (C) tracking, and (D) intermediate classifier block rigid deformations try to match one curve over the other.
The goal is minimizing a function of elasticity through the

. . ) . . transformation of the curve flexion, orientation or strétgh
A) Segmentation of potential flaws:Numerous investiga- : o . . .
Generally, this transformation is not invariant under tiota

tions have been carried out to segment flaws depending on . p . . "

and scaling [16], it is very sensitive to noise because ieis d

the product analyzed [3, 26, 31, 35]. Here we used the seg- ~ T, ) . .

: . . . ined in terms of the curvature, and it requires the evalnatio
mentation and feature extraction method, described in [26

. . . . . . . f second order derivatives [38].
with the aim of identifying multiple regions which may cor- ) o . ,
respond to real flaws. In particular, the segmentation algo- ©Ur investigation proposes a simple and effective curve

rithm used is able to detect most real flaws as well as numefignment method by minimizing the Pearson’s correlation
ous false alarms. The process consists of the followindy eacC€fficient using an isometric transformation between two
potential flaw extracts a set of measurements (described ff'Tves: We use this scheme because in the analysis of man-
Table 1) and stores them in a normalised feature vector. Féffactured products the object being analyzed is usually not
instance, letri, =[x, y,, 1] be the centre of mass stored in deformable. This premise justifies the use of a rigid trans-

homogenous coordinates of the segmented reigiothe a- formation method with which, given a rotation and a lin-
thview, and lew/,, be the feature vector of the regibm the eal displacement, it is possible to estimate a correspareden

a-th view. As a result, numerous potential flaws appear abetween the object’s control points. However, due to the ob-
observed in the segmented image (Fig.1). ject’s rotation, some regions can remain occluded, anéther

fore the proposed system must consider that only some re-

gions retain this transformation. The proposed robusesyst
B) Robust control points: of control points consists of two stages that are detailed be

As stated before, our final goal is tracking real flaws inlow: matching of regions, and matching of control points.

an image sequence. For this purpose, accurate corresporigld) Matching of regions: This consists of establishing cor-
ing points between every pair of views are required. In genrespondences between regions of each view and not between
eral, the estimation of control points can be solved by vareontrol points. The designed process is composed by four
ious mechanisms that use the intrinsic information of thestages: First, segmentation of those regions in which the in
structures after a process of segmentation, edges ertnacti tensity of the object is distinguishable from the backgibun
normalization, and smoothing [24, 38]. In general, theee arby using Otsu’s method [17] (Fig.3a). Second, extraction
two curve alignment categories: methods based onrigidtramf a set of features for each segmented region. This con-
formations [43] and methods based on non-rigid deformasists of extracting the moments of Flusser-and-Suk [39] of
tion [9]. First, methods based on rigid transformations deeach region in three views. Third, determination of a region
termine the control points by estimating the rotation,dine correspondence using the features extracted before hy rela
displacement, and scaling parameters [24]. However, due fag those regions with greater similarity. The similarigr r
the rigidity assumption they are sensitive to occlusioms, d lation is fulfilled when two or three regions have little vari
formations, articulations, perspective projections, atiter  ation in their normalized features according to the Euclide



distance metric (Fig.3b). Fourth, smoothing the edgesdieasame distance and to be aligned, it is necessary to select a
region in correspondence, in order to decrease the noise séction of equal length from each list. LBf a section of
each curvature. For that we calculate the perimeter of eaaturveC, be such thaP = C(d), whered = [s,---,sj], for
segmented region and generate a list in a parametric form ag € [1,---,n]. In this way there is a sectio® in the first

Zs = [Xs,Ys], wheres=0,...,L — 1 is the index of the list view that has the same length as sect®nn the second

of pixels ordered in a turning direction, ahdis the num-  view. These sections of the curve do not necessarily have
ber of pixels of the region’s perimeter. Using this paraimetr a correspondence, and for that we define a shift operator
form, we generate the Fourier descriptors, transformieg thO(P,A) that displaces the lig? by A positions in a turning

Zs coordinates into a complex valug=xs+ j - ys. This sig-  direction. Operato® uses the function "mod” (modulus af-

nal with periodL is transformed into the Fourier domain by ter division) to determine th# relative positions that lit,

means of a discrete Fourier transform (DFT): of lengthP, must turn.
Using the above definitions, we implemented an align-
L1 ment functionu(Q) as the maximization of the Pearson’s
Fo= Y T i correlation coefficienp(a,3) [13] between the isometric
s=1 transformation of a section &, with the shift of sectiorP,

The modulus of the complex Fourier coefficients describgéth ajumpA, composed by four parametdds= {6, As,, Asy, A }

the energy of each descriptor. Therefore, if we choose the
highest energy coefficients (above 98%) and return to real
space with the inverse discrete Fourier transform (IDFT) weH (@
get a smoother curve with less noise. This transformation
produces the same number of points as the original curvé/here,

Likewise, the spacing between the original points remains .

constant. However, when applying the elimination of somer — {0939 —sm@} t= {A&} (2)
Fourier coefficients, the original curve is transformeaiat sin® cosf |’ Asy

new curveCs = [xg, Ys|, where Cs # Zs. o _

B.2) Matching of control points: The estimation of control The minimization ofp(Q) must findQ parameters to
points is a process in which the correspondence of pair&Stimate an alignment between sectiBpandP,. The main

points on the border of a region is established (Fig.3c). usddvantage of this functionis that it does notrequire a perfe
ing Fourier procedure as described above, we define a cur@gnment because the correlation coefficient takes a maxi-
C: corresponding to a region in the first view, and a ci@ye  MUM if the displacement is linear. Another advantage is that
corresponding t€; in the second view. Both curves do not CUrvesPi and P, are open, the alignment determines only
have the same length because they correspond to the perinf&ctions that are corresponding, allowing control poiats t
ter of corresponding regions. However, these regions haJa€ obtained for curves that have partial occlusion in corre-
an isometric transformation, and in cases of occlusion th&éP0nding regions. Also, the use of the paramatailows

curves will have different sizes. For both curves, to keep th finding a position refation for curv@, with Py, and in this
way, while curveP, adjusts its shift, curv®, adjusts its lin-

eal displacement and rotation angle to become aligned.

) =[1=p([RY][P],0(P2,A))| — min (1)

C) Tracking of potential flaws: In the previous steps we
have segmented all potential flaws along an image sequence
and we have established the corresponding points in a se-
quence. We now turn to the problem of separating real flaws
from false alarms. The essential point is that only real flaws
can be tracked along an image sequence. A real flaw entails a
spatio-temporal relation in different views where it apsea
while a false alarm corresponds to a random event.
C.1) Two views:

If a potential flawmi, in view a is actually a real-flaw
it must have a corresponding poimt‘) in another consec-

. . . . L utive view b where a potential flaw was also segmented.
Fig. 3 Matching of regions: (a) Segmentation of regions in a seceien P " 9

by Otsu’s method. (b) Correspondence between regions dingoto Ac_cording to th_epringiple of multiple Vie.W geometr[y.-S],
a similarity criterion between the extracted features.Me}ching of ~ pointsmj andmlJ) are in correspondence if matif ,, exists
control points on the border (i.e., the curve) of a region. such that




Then, choosing randomly four restrictiofisj, k,1) be-
tweenN rows, the problem that follows must fulfill the fol-

iT : iT f1 f2 f3 : lowing condition
mb . Fa,b . ma = mb . f4 f5 fﬁ . ma =0 (3)
f7 fg fg .
Biji :det([Bi Bj Bk B|] ) =0 (7

whereF, 4 is known as the fundamental matrix of the pro-
jection of pointsmial andmg), in homogenous coordinates as Where rows(i, j,k,|) belong to the combinatorial subset of
X vh, 1T and[xijj,yljj, 1]7, respectively. Once the set of cor- .R-: C). As we stated before, to gstimate lﬁeparameter;
responding positions has been generated in both views, wkliS necessary to solve the optimization problem by looking
use the method proposed by Chen et al. [7] to make an infor four Bj restrictions such that (7) is a minimum according
tial estimation of the fundamental matrix. For the sake oft®

completeness, we briefly describe the Chen’s method below.

The method proposed by Chen et al. is based on choos- N
ing a subset of candidate points by exploiting the fact thata,8,a’,8) = argmin, 5 ¢/ g Z |Bijki | (8)
the rank of the fundamental matrix is two and the value of
the epipolar restriction is Zer(ﬂT@T -Fap-mj = 0). Based Next, replacing the™ parameters in (5) allows us to

on this, it is possible to define the fundamental matrix with-compute the vectof by decomposing into singular values
out losing generalization by means of a lineal combinatiorjS, v, D] = svd(A).

of its values, where it is only necessary to estimate four pa- Thus, the solution of (5) corresponds to the last column
rameterd” = {a,B,a’, B’} according to vectorD. Finally, thel” parameters obtained in (8) are re-
placed in (4) defining an initial solution &f,p. In our re-
search, we combine this procedure with the RANSAC algo-

o I !

fa=—a'fi—pf rithm, thus the solution with the largest number of inliess i
fo=—a'f4—B'fs used to compute the fundamental matrix.

f;=—af,—Bfs (4) The_next procedure is to estimate the epipo_lar Iine.based
fo— —af,—Bfs on previous results. More formally, IEtbe the epipolar line

defined as the product between the fundamental mirix

fo=—a'afi—a'Bfa+paf+p'Bls and the pointm}, as

Using the above parameters and the point correspon-
dences detected in the control point step, we qlefine anew_ [|;’X7|;’y’|ia’z] = F;b.mia’ (9)
problem asA - f = 0, wheref = [fy, f,, f4, f5] . Since the _ _
values off are not null, only dé#\) = 0 is possible. Like- wherely is the epipolar line of flaw in view b, mj is the
wise, to find a solution of matrid, the ™ parameters are centre of mass of flawin view a and{l;, 4,15 ,] are the
defined randomly. Thus, it is necessary to build a mairix coefficients of the epipolar line. Once the epipolar lige
as has been generated, it is necessary to determine the distanc
between the corresponding flaw in vidw This distance
is determined through theractical bifocal constrain{18].

xi—a)Xg—a’) ... (Xa—a)(x,—a’) ! Given that the epipolar constraintis applied to points astd n
A xi—a)yp—=B) ... Xa—a)(yn—p') (5) to regions, we consider the centre of mass of each potential
= B)—a’) ... (yw—B)(x,—a’) flaw to be a corresponding point between pairs of images.
yi—B)(y1—B') Yn=B)YYn—B)] 4.n Using the epipolar lind},, we identify the correspondence

associated with the potential flavas the potential flavy in
Since the matriXA is composed by stereo correspon- View b that satisfies the constraints
dences, Chen proposed that using only a combination of four
restrictions will be enough to seek a fundamental matrix. Fo iT i
this reason, we define a row vectrof the matrixA as M

. . <& (10)
(15,02 + (1hy)?
a’) for smalle; > 0. If this constraint s fulfilled, a potential flaw
-B) 5 is thus found in two views. In this case it could be considered
a)| - 6) a real flaw with a bifocal correspondence. Otherwise, itis re
B garded as a false alarm. An example is shown in Fig. 4. The



for small &g > 0. If this constraint is fulfilled, we take
the potential flaw to be a real flaw, since it complies with the
correspondence in three views. Should the potential flaw in
the third view not coincide with the projection of the tensor
it is discarded, as it does not fulfill the trifocal conditidn

i ' general, given that the trifocal condition is analyzed fo t

sequences that fulfill the bifocal condition, we reduce the
number of false positives generated in two views.

Fig. 4 Epipolar line generated from the fundamental matrix: ajtFir
view. b) Segmentation of a potential flaw in the first view.iersec- D) Intermediate Classifier Block method:

tion of_ the epipqlar line in the second view with one or morereo The goal of the ICB method is to eliminate those corre-
sponding potential flaws. .
spondences between potential flaws that have a low proba-
bility of being true positives. The ICB method uses the clas-
same procedure is applied to every potential flaw in view sifier ensemble methodology [37], in which multiple linear
that is to be found in view. It is important to recall that the classifiers do the classification and then, through the major
precision of the fundamental matrix allows the correct dete ity of votes technique, a final decision is made. According to
mination of potential flaws along the length of the epipolarthe multiple view hypothesis, the key idea is to consider as
line. However, if the fundamental matrix is not robust, thefalse alarms those potential flaws that cannot be tracked in
epipolar line will be incorrect and the subsequent trifocala sequence of multiple images. Nonetheless, there are false
tensor process will falil alarms that fulfill the above condition and must be elimi-
C.2) Three views:Trifocal analysis allows modeling all the nated in the multiple views analysis using a partial elimina
geometric relationships in three views, and is independeriton classification system. The ICB method has as input the
of the structure contained in each image [18]. The tensodistribution of two classes: flaws (F) and false alarms (FA).
a matrix structure similar to the fundamental matrix, onlyAccording to this distribution, the classifier must detereni
depends on the movement between images and the interrilie region of space where there are actually flaws only start-
parameters of the cameras. Its main advantage is that it céing from point6, and false alarms froréea (Fig.5a). Once
be calculated from the correspondences of the images witlihese regions are extracted only flaws or false alarms (which
out any a priori knowledge of the movement or calibrationthe classifier cannot verify with high probability the class
of the object. This characteristic justifies it because 8ie e which they belong) are assigned to a new class called Poten-
mation of the fundamental matrix does not always eliminatdial Flaw (PF) (Fig.5b). As a result, the ICB method gener-
all false positives. ates the separation of three classes (F, FA and PF). Accord-
Based on previous results, to confirm that a bifocal coringly, flaws or false alarms contained in the PF region are
respondence indeed represents a real flaw, we try to discovesed as new potential flaws in the following step of the mul-
a new correspondence using a third view with the help ofiple views analysis. This reduction avoids the analysis of
trifocal tensors. LeT = (T,'®) be a 3x 3 x 3 matrix repre-  the trajectories of all flaws in correspondence; consedyent
senting the trifocal tensor that encodes the relative motioimproving the performance. The simplest form of the previ-
among viewsa, b, c.> Then, we can estimate the hypotheti- ous classifier is reflected in the linear separation of thé\F, F
cal position of a flavk in a third viewc using the correspon- and PF regions, using the;\and \; features (Fig.5b). The
dencesm,, mg) and the tensof as methodology used by the ICB is composed by a series of
stages detailed below (see Fig.6).
_ . D.1) Assessment method of the ICB classifie©ur prob-
. 1 my (TH—x T3 lem falls within the framework of supervised classification
Me=——————— | M (T?-xT%) | . (11)  problems, since the class which each potential flaw belongs
my' (TH—%T5) mi (T3 —x T33) to is known. Using this information, the classification mbde
is designed by means of the cross-validation method. To
We compare the estimated position with all potential flawsompare the results of the various configurations of the clas
of view ¢, regarding the potential flakas a real flaw if sifier we use the ROC curve [14]. The main advantage of
the ROC curve is that it allows the comparison to be inde-
pendent of the sample. For this research, the classes are a

K k : . .
Mg —mel| <é1, (12)  set of registers with flaws and false alarms, we determine
2 See [18] for details on the computation of the trifocal tesso the sensitivity(S,) and 1-specificity1— ) ass = rpreq

3 The estimated projection in the third view can be improveglgp ~ @NdSp = 5.7, Where TP is the number of true positives
ing the point-line-point method proposed in [18, pp.373]. (classified correctly as flaws), TN is the number of true neg-
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atives (classified correctly as false alarms), FP is the mumb of flaw i in view a and Iet\/gJ be a feature vector of flayin

of false positives (classified incorrectly as flaws), and EN i view b. If these two regions are corresponding, in theory the
the number of false negatives (classified incorrectly asefal distance of their features should be short, since both nsgio
alarms). The objective is for the sensitivity to be maximumare the same in two views, otherwise if there are false alarms
(100%) and simultaneously the 1-specificity to be minimumthe distance between them should be longer. With this sim-
(0%), this way the classifier guarantees an ideal classificgle criterion we define a unique vector of featud;'g that

tion for two classes. In practice this is difficult to achieverelates two regions for the bifocal case arﬁ which re-
because it depends on the classifier’s internal parametelges three regions in the trifocal case as
which can vary with respect to the noise existing in the data.

D.2) Selection of featuresThe features selected by the ICB , .

classifier are determined automatically using the informa- Vafb— [(V'a—Vé)}

tion contained in each potential flaw, each of which has an Liik i ook
associated feature vecterEach feature vector is composed Vabe = [(Va Vb) (V —Ve)(Vy — VC)}

of twelve measures extracted previously in the segmenmntatio
step (see details in Table 1). Here we used the Take-L-Plus- fex
feature selection algorithm [12] to determine a combimatio
of features that separate the classification space. The-obje
tive of this algorithm is to determine the best features tha
allow greater separation between the classes §pace

(13)

For the next analysis and for simplicity, we define ma-
vasv= v'a{b =V abc, because the feature vector contains
the relations between two and three regions and both elimi-
ation processes are independent (see ICB process in.Fig.2)
.3) Linear classification: We use a linear discriminative
. . ) ) analysis (LDA) classification [12] that allows finding the-hy
In the multiple views analysis above, we combined mul-
perplanes that best separate the solution space. Fortthat, t

tiple flaws only by means of a geometric analysis. In this
>classification process must fit the following linear equatio
next step we carry out a fusion of its features to seek a sep-

aration of its classes. For instance,\gtbe a feature vector

T
- : - — W' -v+wy >0 14
4 As a criterion function, we used the Fisher discriminan{ [42 +Wo ’ (14)

wherew = 5,1 (V; — V») are the hyperplane parameters,

1 & 2w is the interclass covariance matrix, andorresponds to
class S=sl . .
distribution classified as \ the feature vector chosen earlier. Finally, the valgefor
I > potential flaw Potencial two classes is determined according to the mean of features
" Flaws v I~ iliti
class ] % PF) v, and V2 and the probabilities of each clapg and peg
‘false class o] ¥ according to
alarms) &( “flaws’ 2
g . FN
z -] 0. t
Ora 1 1 G . Py ;laws 1 1 pel
- 1 I v i ® @ - - — 5
Classified as Classified as By F) Wo = 5 (Vi+Vo) - 2" - (Vi — Vo) —log ( ) (15)
false alarms flaws — — Pe2
[FA.4] [Fiul Feature V1

Once an initial solution is obtained for the vectorthe

. o _ _ optimization problem tries to fit the hyperplanes so thaj (16
Fig. 5 (a) Distribution of classes of potentials flaws between gigilv) is the maximum, this ensures that we are obtaining a high
Distribution of three classes in two dimensions with a lmsgparation ! .
between F, FA and PF regions. performance ofS,) and(1—Sp) for each sub-selection of
its features.

(@ (b)

PF,=» ICB —»PF,

FA F

| ! . This problem has been solved by the Nelder-Mead Sim-

: /k I‘ et |‘ e I,Evaluation F plex method [23]. Then the information from the selected
= selection)y) [Classifieation straight lines and features is used to evaluate the perfor-

. mance of the classifier on the test data.

— ) D.4) Joint classification :

£ &I» uures l' Clanear l' Evaluation I—» The linear discrimination analysis model has been used

4 together with the cross-validation technique. This way the

Fig. 6 General model of the internal process of the ICB linear ¢lass optimization process generated by each combination of fea-

fier with cross validation selection and automatic featelection by ~ tUres generates, as a result, a set of straight lines specific
means of Fisher discriminant. for each combination. Finally, this model is used for the

{w,wp} = argmax S,(w,wp)} s.t. $(w,wp) =1 (16)

Intermediate Classifier Block

Fold

L t

ROC Performance.
Sn, 1-Sp
v
Y
hul

Fold

__ Test




testing data by the classifier, therefore a set of weak clasrable 2 Performance of the Uncalibrated Tracking
sifiers makes it possible to generate a robust classification

i Step Flaws in  False Alarms Rate of Rate of
For example, let us assume that we have used@aetsist- sequence  insequence Real Flaws False Alarms
ing of three features in the training phaSe= {V1,V,,Vs}. 2-Views Track 190 198 100% 51.0%
. . . B-2 151 94 100% 24.2%
The separation between them generates a Fhree-@mensmnéi\/iews Track 137 45 100% 11.6%
volume bounded by the cuts of the two-dimensional sep- icB-3 18 17 100% 4.4%

arations, containing only potential flaws (PF) (Fig.7)shi
three-dimensional volume generated from the combination

of the two-dimensional featurég1, V|, [V1,Va] and[V,, V3] Where the matriM is the binary outcome of multiple partial
contains potential flaws. Conversely, the space outside thdassifications for the feature vectoy. Finally, the classifi-
three-dimensional volume could be flaws or false alarmsgation of the matrixM (v,) is defined as
depending on the position in which the hyperplanes are pro-

jected. _ o _ B Z? M (v1)

Our final classification method is based on the use oP(clasgvy) = max—f—=——"—
multiple linear separation models. The objective of the lin 212iM(va)
ear separation is to find a dividing line for two classes, but  This process is carried out for each of the testing vectors.
we use the same LDA algorithm with two purposes: First, toin our analysis, we consider the combination of two to seven
find the best separation line that minimizes the FPs subjedgatures. This is because more than seven features turn the
to S, = 1 defined as™. Second, to find the best separationperformance of the ICB down to zero, and therefore it is not
line that minimizes the FNs subject tdS3 = O, defined as possible to filter more false alarms. However this number
sN (see slopes in Fig.5b). These two separation lines gerean vary as a result of the linear classification inserted in
erate a bi-dimensional separation space, and the totaf set @ach ICB.
combinations of features generates a hyperplane.

Firstly, we calculate the separation line set in order to
evaluate the joint classifier in the testing data for each-con? Experimental results
bination pair. Thus, for the ¥, V,, combination we generate
a linear separation between the straight ligg% and <. This section presents the results of experiments carried ou
More formally, letPFyn, FAmn andF, be the space Qen- on a sequence of 72 radioscopic images of aluminum wheels

erated by the linear intersection between the featuraad (€€ some of them in Fig.8). The dimensions of the wheel
n, defined as are 470 pnnj diameter and 200mind height. The image size

is 572 x 768 pixels with a dynamic range of 8 bits. There
are twelve known real flaws in this sequence. Three of these
PFnn=[v1] -9 <0A [v1]-§N >0={0,1} flaws were detected by human visual inspectios-(2.0 ~
- : \ _ 7.5 [mn) however the remaining nine flaws (small holes
FAmn=[v1]-&" <onv1]-§N <0={0,1 17 ) . )
Amn = [V 1] i‘l;” [v4] Sﬁ"\;‘ o1 @n generated by a drill (8 2.0 ~ 4.0 [mni) in positions mak-
Fnn = [V 1} S":nn >0A [V 1] S’;‘un >0={0,1} ing their detection difficult) were not detected. A pattefn o

(19)

The next step is to verify the classification for each fea-
ture vectonv with unknown values. To that end, It= C5
be the number of possible combinations of a feature vector
P. For every vector of lengtR we generat®& combinations
of two features, therefore the classification result rezpia
set ofN results, and then by simple majority vote, the final
classification is evaluated. Let us assume thas the first
feature vector and we want to find its classification. Its itesu
for each clas§PF,FA,F} is defined by

.
PF.> FA, Fip

M(vi)= | PFnn  FAmn Fmn (18)

: : : Fig. 7 Three dimensional representation of the ICB classification
PA-1N FANN-1 FNN-1] g method.
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1 [mm in the middle of the wheel is projected in the X-ray
projection coordinate as a pattern of 2.96 pixels in the impag
i.e., the flaws are very small. In addition, since the sigoal-
noise ratio in our radioscopic images is low, the flaw signa
is slightly greater than the background noise, as illusttat
in Fig.8. In our experiments, the mean gray level of the flan
signal ranged from 2.4 to 28.8 gray values with a standar
deviation of 6.1. Analyzing a homogeneous background ir
different areas of interest, we obtain noise withif3 gray
values with a standard deviation of 2.5. Due to the reasor
stated above, the segmentation of real flaws with poor cor
trast can also involve detection of false alarms.

We separated the analysis into three steps. (1. Identif
cation) Potential flaws are automatically identified in eack
image of the sequence using a single filter without a prior
knowledge of the object structure (Fig.8b). The result ef th
identification generates a data base that contains 424 reg
ters with twelve features of the total potential flaws degdct
in the sequence. From them, 214 are real flaws, which co
respond to the twelve real flaws mentioned above, and 21
registers are false alarms that must be reduced. (2. Tigckin
In this step we separate the analysis into two phases: a) ti
detection of pairs of flaws using the estimation of the funda
mental matrix in two views, through the epipolar constraint
b) using the previous results, we re-projected the pairs ¢ |
potential flaws in the third view using the trifocal tensor es
timation. (3. ICB method) Classifiers are inserted into twof'9- 8 Generalized flaw tracking process in one sequence of three
. . . . views: a) ldentification of potential flaws. b) Searching éomatch
and three views to filter potential flaws between the Viewsy,, views with the fundamental matrix. c) Searching for achan

according to the general model proposed in Fig.2. All thehree views with the trifocal tensor. d) Final detectiore talse alarms
phases are detailed below. are eliminated without discriminating real flaws.

remains at 100% of real flaws detected in the sequence, how-
ever, it has not been possible to eliminate all false alarms

The first phase is to assess the performance of the algorithfhable 2, Rate of False Alarms). Furthermore, the ICB method
in two views using the bifocal method. This consists of de-n two and three views has allowed the detection of a large
termining the corresponding flaws between two images in #2art of the real flaws (F) and false alarms (FA) with high
sequence through the search for flaws along the epipolar liferobability, allowing them to be separated from the multi-
(Fig.8c). The results indicate that the model detects 10009R'e views analysis. Thus, in two views the reduction of false
of the real flaws that are corresponding in two views (Tablélarms with ICB-2 reaches 24.2%, and with ICB-3 it reaches
2, 2-Views Track). This validates the assumption of corre4-4%. These results indicate that the proposed method has
spondence between the position of real flaws and imp"egenerated a sustained reduction of potential flaws (PF) in
that automatic detection with the fundamental matrix alow the sequence.

the detection of corresponding flaws that are contained on

the epipolar line. There is, however, a large number of false

alarms in the sequence (198/388=51%), which must be ret-3 Performance of ICB

duced using a third view.

4.1 Performance with two views

The results indicate a clear correlation between the perfor

mance of the ICB method for two views and the number of
4.2 Performance with three views features chosen. By using the five best feature combinations

the performance of the classification is ideal, but there is a
After completing the matching of possible pairs of flaws inclear decrease in the number of false alarms extracted by the
both images, we extend the detection of flaws to the thirdCB method (Table 3. 2 Views). For example, in the case
image in the sequence (Fig.8d). In this case the performanad combining the five best features, only 17.3% of the to-
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tal potential flaws in correspondence are extracted, lgavinTable 3 Sensitivity and 1-Specificity performance of the ICB classi
82.7% which is then transferred to the following matchingfier, and percentage of flaws reduction of ICB classifier

block in three views. In the case of three views, the numberviens Features 2 3 2 5 6 7
of correspondences is drastically reduced because the cor- S 92.7%  956% 98.4%  100%  100%  100%
. ) 2 Views 1-S, 24% 0% 0% 0% 0% 0%
respondence of a false alarm in three images has a lower ICBreduction 52.3%  49.5% 43.6% 17.3% 12.8% 10.3%
ili H S 95.8% 98% 96% 99.1% 99.1%  100%
probability of occurrence. The highest performance result . . 1-S.  25% 167% 267% 222% 0%  6.1%
occur when the six best features are combined by means of ICBreduction  81.6% 61.17% 79.7% 89.4% 75.3%  75.7%
the Take-L-Plus-R selection process included in each ICB
(Fig.6). Table 4 Comparison between different calibrated and uncalibrated
With respect to real-time capabilities, we tested our methigeking techniques
in two ways, with and without ICB. First, with ICB, the re- Method Images Yearand  Analyzed Trie False
quired computation time to process a sequence of three im- tracked reference  Images  Positives Positives
; ; ; 0 3 2002 [29] 70 100% 25%
ages, was in average 3?.@,[Wlth a remamder of 4.4% of Calibrated 4 2002 [29] 7 100% 0%
false alarms. Second, without ICB, using the same sequence, 5 2002 [29] 70 83% 0%
the time was in average of 31.§{, with a remainder of 2 2005 [28] 24 92.3% 10%
32.3% of false alarms. These results are very promising be- 2 g‘d I g 2o
cause the ICB method can filter the majority of false alarms Uncalibrated 2008 [36] 70 86.7% 14%
in sequence, although it did require more time. We want to 2 2008"% 70 100%  24.2%
3 2008 70 100% 4.4%

clarify that the ICB method follows a classification ensem-
ble methodology to filter false alarms; without ICB each po-
tential flaw is tracked in two and three views, thus the num; .

. . . o 5 Conclusions
ber of tests in multiple views is increased.

Automated visual inspection remains an open question. Many

research directions have been exploited, some very differe
4.4 Comparison with other methods principles have been adopted and a wide variety of algo-

rithms have appeared in literature on automated visual in-

Finally, we present a summary of the performance obtainegPection. Although there are several approache§ in the last
with the calibrated and uncalibrated AMVI method (Table 30 years that have been developed, automated visual inspec-
4). For comparison purposes, we show the performancé?n systems still suffer from i) detection accuracy, bessau
carried out with the same sequence of X-ray images gdhere is a fundamental trade off between false alarms and
signed in [29]. The given performances correspond to thaissed Qetections; and @i) strong bottleneck deriyed _from
‘true positives’ and ‘false positives’. The true positivee ~Mechanical speed (required to place the test object in the
the percentages of flaws correctly detected in a sequencdesired positions) and iii) high computational cost (to de-
The false positives (or false alarms) correspond to the peférmine whether the test object is defective or not). In this
centage of ‘non-flaws’ that have been classified incorrectlp€nse, Automated Multiple View Inspection offers a robust
as flaws. Current results indicate that it is possible to obalternative method that uses redundant views to perform the
tain 100% of the real flaws in a sequence detected correct{f?SPeCtion task. In this paper we have developed a new flaw
These results have been generated in spite of the optical af§tection algorithm using an uncalibrated sequence of im-
geometric perturbations and the low SNR level that corre29€s. Using the new uncalibrated AMVI methodology, we
sponds to X-ray images. However, false alarms remain i,lilave designed a novel system based only on the spatial posi-
the sequence and reducing them has not been possible. BINS Of the structures. The proposed approach uses the pro-
spite the false alarms, our method has achieved better pdfction of the epipolar line, generated by the fundamental
formance than the system proposed by Pizarro et al. [36p1atr|x and the trifocal tensors in a robust manner, with the
mainly because it is not necessary to carry out matching dfurpose of building a motion model without a priori knowl-
the potential flaws, only a tracking analysis. According to€dge of the object structure. The key idea of our strategy is
the results generated in two and three views in [4], the ICE® consider as false alarms those potential flaws that cannot
technique has allowed a reduction of 8.7% in the correspori2€ racked in a sequence of multiple images. In this research
dence number in two views, and of 5.5% in the case of thre¥/€ have introduced the calculation of corresponding points

views with a 4.4% remainder, which has been impossible t@enerated artificially through the maximization of the eerr
eliminate so far by geometric analysis. lation coefficient from two curves and the intermediate-clas

sifier block (ICB) method in order to filter false alarms. The

5 The method was programmed in Matlab 7.0 under Windows xPMethod was tested in a sequence of X-ray images of alu-
SP2 on a Pentium Centrino Duo/2 GHz minium wheels but the methodology can be applied to other
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sequences as well by changing the segmentation and corp.
trol point algorithms as we demonstrated in bottle inspecti
system with multiple views in [6].

Our results indicate that it is possible to generate an au-
tomatic model for a sequence of images which represent the
movement between the points and regions they contain. This
way we can use as reference points the edges of the struté
tures or areas, without loss of information, using a norline 13
method. The main advantage of our model is the automatic
estimation of movement thus avoiding the calibration pro-14-
cess. Our future aim is to reduce the number of false alarmg;
by means of a method of final verification of the flaws in
correspondence, and an analysis of the ICB classification
method with other ensemble classification and probabilislG-
tic techniques. Another possibility is to change the Fisher
Discriminant into another Linear Dimensionality Reduntio
(LDR) technique inside of each ICB. That way we can max-17.
imize the Chernoff distance based in [1]. The essential ide
is to increase the distance defining linear class sepasabili
This will allow the separation of more false alarms and flaws
in each ICB. Thus, with less potential flaws in a sequencel9.
the process will be faster.
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