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Abstract: A majority of systems that take advantage of human motion in order to recognize gestures are developed
through temporal image processing algorithms. However, thanks to the increasing development of acceleration
sensors in recent years, it has become possible to use actual arm movements as an acquisition system. This feature
could be used in more intuitive systems to communicate reach-to-grasp movements. This research proposes placing
an accelerometer on a user’s arm to recognize grasping movements in an unique way. The most complex part of
this problem revolves around the fact that an accelerometer is unable to evaluate whether a user is performing an
reach-to-grasp movement. Given that the movement involves a temporary action, it is possible to use a hidden
Markov system to dynamically predict user grasping movements. The results indicate that the model can correctly
predict all movements with an F-score = 99% on average.
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1 Introduction
Human movement analysis is an area of study that
has been quickly expanding over the past few years.
Progress in analyzing image sequences, the evolu-
tion of computer systems and the miniaturization of
technology used to capture movement have made mo-
tion analysis applications possible in areas such as
athletics, psychology, therapies, military and secu-
rity systems, prevention in high risk dangerous ar-
eas, customer movement statistics in retail outlets
(e.g. [1, 2, 3]) . On the human gesture level, the ma-
jority of research has been conducted around the anal-
ysis of gesture language, of which sign language is
the most common. However, communicative gestures
are only one small part of all the gestures made by
humans.

Out of the thousands of human gestures that ex-
ist, this paper focuses on grasping movements. These
gestures have not been studied extensively because
movements that occur in natural human interaction
with their surroundings are difficult to capture in a
controlled environment. Therefore, within the sys-
tem parameters it is necessary to include perception
and knowledge of the environment. Before even con-
sidering body segmentation and motion recognition in
image sequences, the system must solve many inher-
ent difficulties. These challenges include signal vari-

ability over time: direction and dynamics of gestures
vary with each execution even when performed by
the same person; signal variability in space: similarly
to varying during execution, movements also vary in
each dimension of space; temporal or macro segmen-
tation: it is necessary to segment each sequence tem-
porally to effectively study each individual gesture.
Every human gesture belongs within a particular con-
text. Grasping movements are linked to an object’s
intrinsic nature (shape, size) as well as its extrinsic
characteristics (position and orientation relative to the
user) [4]. Therefore, accurately defining specific ges-
tures and the decision process (using macro segmen-
tation) then recognizing those movements constitutes
determining an important focus of study.

To avoid the effects of image sequence analysis,
this investigation aims to measure arm acceleration
movements through devices incorporated directly on
a users body, specifically a Wii (Wiimote) attached to
the arm (see Fig.1). It is important to stress that the
acceleration sensor cannot recognize grasping move-
ments given that a mechanism to measure grasping
motions does not yet exist. Therefore, the current
goal is to characterize a few specific types of arm
movements in order to recognize exactly when a per-
son intends to grasp an object. Because the action
involves a temporary movement, a hidden Markov



model (HMM) is used to determine which specific ac-
tion is being performed. The greatest complication
of this system is formulating features that the Markov
system can assess. In order to accomplish this formu-
lation, a set of extracted features is created from the
acceleration sensor which makes it possible to predict
which movements the grasping action involves with
high probability.

2 Background
One relevant area of the human-computer interaction
is the gesture recognition. Normally people use arm
and hand gestures to do actions like grasping, playing,
writing, painting, etc. Nowadays, gesture recognition
is being used in many areas. Kim et al. [5] proposed
gesture recognition utilizing four processes; hand de-
tection and tracking, extracting a meaningful gesture
from an image sequence, specific feature extraction
and finally, gesture recognition.

Motion detection utilizing a camera is not a triv-
ial task due to lighting changes and complex back-
grounds in addition to tracking quick hand move-
ments [6]. To solve the hand tracking problem, tech-
niques such as the condensation algorithm [7] or
Bayesian networks [8] have been used. However,
the largest obstacle is the high computation time. An-
other current problem in the field is gesture segmen-
tation, i.e., how to distinguish when one movement
ends and another begins. The variety of patterns in a
gesture, compared to the total number of possible ges-
tures, creates a difficult feature extraction and gesture
recognition process. Hidden Markov Model applica-
tions or neural networks are typically used to recog-
nize movement patterns (e.g. [5]).

Hidden Markov Model: Currently there are a few
different gesture recognition systems based on in-
put devices with sensors such as Wii controls and
HMM models as inference algorithms for gesture
recognition [9]. Among the developed systems is the
Schlomer, et al. [9] application which can be trained
with user defined movements, meaning it is not lim-
ited by predetermined gestures. Likewise, Han et
al. [10] has developed systems that are capable of de-
tecting normal daily motions such as walking, climb-
ing stairs, running and even falling among others.
These systems show that the acceleration sensor has
the potential to recognize and monitor daily activities
automatically. One of the major difficulties facing the
acceleration sensor is the positioning that is required
when constructing system parameters. To deal with
this effectively, Han et al. [10] developed a method
that compensates for device rotation, independent of

sensor position, through an HMM model. More rele-
vantly, video games have increasingly used this tech-
nology, providing interactive systems which operate
with acceleration sensors [11]. In addition, new mo-
bile phones increasingly employ sensors to control
games and applications. This is the case for the frame-
work developed in [12] which uses a touch screen and
accelerometer as the interface for video games as well
as an a HMM system for gesture recognition. In this
same category are applications that use built in ac-
celerometers, such as in the iPhone, which have been
used successfully in gesture recognition (e.g. [13]).

3 Proposed Method

This section describes implemented solutions and ad-
dresses (I) feature construction, (II) model construc-
tion, (III) training and simulation.

(I) Feature Construction. This phase aims at build-
ing the feature vector needed to construct the HMM
model. The first step is data preprocessing. In order
to do this, a temporal window is determined which
allows the system to obtain the largest quantity of
data whilst still preserving movement history. The
results obtained with a Wii sensor indicate that this
range corresponds to time window 0.4 (s). By utiliz-
ing this window size, all intervals have sufficient mea-
surements to reduce noise that could be present and
additionally, no window is left without data to process.
This resolves the data preprocessing without requiring
any additional algorithms (Fig. 2).

For each window of time (Ti) a feature vector is
constructed with the average mean values from each
window. It was necessary to determine a new feature
set to improve the HMM model based on the previous
signals. These operations were the positive scalar sum
of the three acceleration axes (1), angle calculation
using Pythagorean theorem (2) and the differences in
acceleration measurement and the angle between time
t(n) and t(n+ 1).
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Figure 1: General Framework. Three movements states detected by our system.
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Figure 2: Data preprocessing.

∆F (t) = F (t)− F (t− 1)

for all F = {AccX , AccY , AccZ , Acc, α, β, γ} (5)

Each movement has an associated feature vector,
the following four steps are performed in order to con-
struct the vector: (1) Determine the start and end point
of each movement according to class. (2) Assign each
feature vector to a class. This is determined by mea-
suring a movements start and end times, then record-
ing and distinguishing what kind of model class the
feature vector pertains to. (3) Move time measure-
ments to the source to ensure that the feature vector is
independent from the time measurement, but not the

event. For this reason, we calculated the average mean
of each signal.

x =
1

n

n∑
i=0

Ti

Using this procedure, each signal is calculated and
displaced by the same amount towards the origin. (4)
In order for feature models to consider the sequence
of events, they are converted from a set of feature vec-
tors belonging to the same class, to a feature vector
that represents them all. Each feature vector repre-
sents a point on a line in time. Considering this, an
nth grade polynomial is reconstructed so that it repre-
sents all points. Now time becomes part of the feature
vector, but not as a field, it is internalized in the values



of each field. At the same time, it is just one vector
that represents the action. To construct this equation,
a 3rd degree polynomial interpolation is used taking
advantage of the least squared method. This replaces
all pertinent measurements within the same motion for
a single feature. For each feature, four values are gen-
erated which represent the feature {A3,A2,A1,A0}.

P
(
x
)

= A3x
3 +A2x

2 +A1x+A0 (6)

The design of these features provides more infor-
mation than the signal in itself, this means that the
polynomial parameters contain all points along the
motion (Fig.3).

(II) Construction of the HMM model: The HMM
model was designed with three states. These states
are reach movement, retreat movement and stillness
state. The observations that were defined above are
the four components of polynomial functions of ac-
celeration and its possible combinations of axes, an-
gles as well as differences in acceleration and angle.
This is defined to identify the best combinations to
re-learn a movement. The probabilities of transition
between states and the probabilities of an observation
sequence were obtained through the Baum-Welch al-
gorithm [14] which estimates the transition probabili-
ties, in order to find emission probabilities, given a se-
quence of observations using the algorithm Forward-
Backward [14]. The proposed feature allows us to
analyze the way in which each feature is relevant to
classify a particular movement.

h1 = P(AccX) = [A3A2A1A0]AccX

h2 = P(AccY ) = [A3A2A1A0]AccY

h3 = P(AccZ) = [A3A2A1A0]AccZ

h4 = P(α) = [A3A2A1A0]α

h5 = P(β) = [A3A2A1A0]β

h6 = P(γ) = [A3A2A1A0]γ

h7 = P(∆AccX) = [A3A2A1A0]∆AccX

h8 = P(∆AccY ) = [A3A2A1A0]∆AccY

h9 = P(∆AccZ) = [A3A2A1A0]∆AccZ

h10 = P(∆α) = [A3A2A1A0]∆α

h11 = P(∆β) = [A3A2A1A0]∆β

h12 = P(∆γ) = [A3A2A1A0]∆γ

h13 = P(Acc) = [A3A2A1A0]∆Acc

(7)

Each feature signal is then transformed by an ar-
ray of four feature polynomial factor by using the

method describe in the previous step. In order to in-
crease the number of features proposed, we formulate
four new features composed by a lineal combination
of the some previously proposed features.

h14 = h1 ∪ h2 ∪ h3

h15 = h4 ∪ h5 ∪ h6

h16 = h7 ∪ h8 ∪ h9

h17 = h10 ∪ h11 ∪ h12

(8)

(III) HMM model training and simulation: In
the training phase measurements of a set of previ-
ously classified data were randomly selected. These
sets are exclusive, 70% correspond to training and
the remaining 30% are used for testing. The train-
ing algorithm receives as input parameters all train-
ing observations, the total amount of those observa-
tions, the number of model states, the number of it-
erations of the Baum-Welch algorithm and finally tol-
erance, which is the finishing criterion estimated by
the change in the Likelihood registry. The tolerance
used for construction was 10−3 and only 10% of the
measurements did not reach convergence within 20 it-
erations. Most of the data did so in less than 10 it-
erations. Once the model is trained, results are ob-
tained as the transition values and emission. In the
simulation phase, given a sequence of movements, the
Forward-Backward algorithm is used followed by ob-
taining the likelihood of each class. After, which class
corresponds to the movement through the maximiza-
tion of Likelihood is determined.

lik(h|Θ) =

N∑
i=1

log

K∑
k=1

πkp(hi|Θk)

for all hi with i = 1 . . . N

(9)

Θ∗
ML = arg maxΘlik(Θ) (10)

4 Experiments

In the experimentation phase multiple arm movements
going towards an object were captured. The acceler-
ations that were captured were then used in the eval-
uation of multiple HMM models. The gestures were
captured by placing different objects on a table at a
distance of 30-40 (cm) and having a user repeat grasp-
ing motions towards the objects. The test consists of
approximately 50 movements which belong to each
class. To determine strength of the constructed model,
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Figure 3: Polynomial reconstruction using 6 and 8 points of Wii accelerations data.

the precision estimates (P = TP
TP+FP ) and sensitiv-

ity (R = TP
TP+FN ) were evaluated. The variables of

these equations correspond to values {TP, FP, FN},
which are equivalent to True Positive, False Positive
and False Negative. In particular, precision (P ) and
sensitivity (R) should tend to 100% if classification
were perfect. With these results, the performance was
measured using the F-score statistics equation [15].
This is interpreted as the harmonic mean between pre-
cision and sensitivity for Fscore = 2×P×R

P+R .
Using the above metric, a classification table was

constructed to evaluate the performance for each sim-
ulation. In the best cases, the table has only numbers
in diagonal. After constructing the tables, precision
as well as sensitivity and finally, the Fscore, are cal-
culated. Because these results depend heavily on the
selection of training and simulation data, the Fscore is
calculated using an average of 1000 iterations for each
set of features. The results of each feature evaluation
according to the type of movement are shown in Fig.4

The characteristics which obtained the best re-
sults correspond to h11 and h14. Starting with these
results, the feature combinations which resulted in the
model with better average yield are trained, shown in
Fig.5.

5 Conclusions

Through the experiments explained above, this inves-
tigation has shown that it is possible to detect human
gestures in reach-to-grasp tasks using an acceleration
sensor, obtaining an F-score average of 99%. The
main contribution of this work lies in the design of a
features set that reflects human movement in reach-to-
grasp tasks through a Markovian system. It is impor-
tant to note that the acceleration sensor measurements

provided by the Wii control cannot build an intent de-
tection model without a prior transformation. This pa-
per proposes to transform the temporal acceleration of
polynomial feature sets.

Regarding the position of the Wii on the body, it
was determined that the best configuration is one that
moves in a normal direction towards the ground (y-
axis), specifically held on the outside of the humerus
bone. Thus, the moment the grasping movement is
being acted out, the y-axis perceives more differences
with respect to the horizon. This configuration was
selected because it retains more information of the
arm movement when the user is performing a grasp-
ing movement. A future work remains such as incor-
porating more types of movements into the model and
increasing the number of features extracted by adding
more acceleration sensors to the body arm, and incor-
porating image video sequences.
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