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ABSTRACT

Automated visual inspection of metal castings is defined as a quality control task that determines automatically
if a casting deviates from a given set of specifications using visual data. Many research directions in this field
have been exploited, some very different principles have been adopted and a wide variety of algorithms have
been appeared in the literature. However, the developed approaches are tailored to the inspection task, i.e.,
there is no common approach applicable to all cases because the development is an ad hoc process. Additionally,
detection accuracy should be improved, because there is a fundamental trade off between false alarms and miss
detections. For these reasons, we proposed a novel methodology, called Automated Multiple View Inspection,
that uses redundant views of the test object to perform the inspection task. The method is opening up new
possibilities in inspection field by taking into account the useful information about the correspondence between
the different views. It is very robust because in first step it identifies potential defects in each view and in second
step it finds correspondences between potential defects, and only those that are matched in different views are
detected as real defects. In this paper, we review the advances done in this field giving an overview of the
multiple view inspection and showing experimental results obtained on metal castings.

Keywords: Non-destructive testing, automated visual inspection, X-ray testing.

1. INTRODUCTION

Metal castings produced for the automotive industry, such as wheel rims, steering knuckles and steering gear
boxes, are considered important components for overall roadworthiness. Shrinkage as molten metal cools during
the manufacture of die-castings, can cause non-homogeneous regions within the work piece. These are manifested,
for example, by bubble-shaped voids or fractures (see some examples in Fig. 1). Voids occur when the liquid
metal fails to flow into the die or flows in too slowly, whereas fractures are caused by mechanical stresses when
neighboring regions develop different temperature gradients on cooling. Other possible casting discontinuities
include inclusions or slag formation. To ensure the safety of construction, it is necessary to check every part
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Figure 1. Radioscopic images with defects (see arrows).



thoroughly using non-destructive testing like radioscopy, which rapidly became the accepted way for controlling
the quality of die cast pieces.

Metal castings inspection is defined as a quality control task that determines if a casting deviates from a
given set of specifications using visual data. Inspection usually involves measurement of specific part features
such as assembly integrity, surface finish and geometric dimensions. If the measurement lies within a determined
tolerance, the inspection process considers the product as accepted for use. Usually, metal castings inspection
was performed by human inspectors, nowadays, however, inspection based on computer vision has been gradually
replacing more and more human inspection. Although humans can do the job better than machines in many
cases, they are slower than the machines and get tired quickly. Additionally, human inspectors are not always
consistent and effective evaluators of products because inspection tasks are monotonous and exhausting, even
for the best-trained experts. Typically, there is one rejected in hundreds of accepted products. Moreover,
human experts are difficult to find or maintain in an industry, require training and their skills may take time to
develop. Compared to a manual evaluation of X-ray images, automated detection of casting defects offers the
advantages of objectivity and reproducibility for every test. In recent years, automated radioscopic systems have
not only raised quality, through repeated objective inspections and improved processes, but have also increased
productivity and profitability by reducing labor costs.1

According to comprehensive reviews on general automated visual inspection2–5 the developed approaches are
tailored to the inspection task, i.e., there is no common approach applicable to all cases because the development
is an ad hoc process. Additionally, detection accuracy should be improved, because there is a fundamental trade
off between false alarms and miss detections.

A comprehensive review on automated inspection of castings6 shows a similar situation. In order to inspect
the whole object, radioscopic images at different positions of the casting are taken and processed. The classic
image processing methods for flaw detection7–9 consist of a bank of filters which generate an error-free reference
image from the radioscopic image taken. Flaws are detected at pixels where the difference between them is
considerable. Using a priori knowledge of the regular structures of the castings, each programmed view is
subdivided into several segments to enable the use of the best type of filter for each part of the image. Varying
the matrix size and the directions of the mask filters, they can be adapted to the regular structures of the
specimen. This procedure is repeated at each programmed position of the casting. The disadvantages of these
methods are as follows: a) The filters must be configured and tuned manually for each casting and position. If
the casting is not exactly placed at the required position, the filter might not work correctly and the detection
may fail. b) The filter parameters, like size and direction of the filter mask, depend strongly on the size and
shape of the structure of the casting. c) Useful information about the correspondence between the different views
of the casting is not taken into account.

Other methods, such as the combined median filter,10 the intelligent knowledge based technique,11 the
feature based approach,12 and the neural networks procedure,13 attempt to detect flaws without a priori
information about the location of regular structures. The prerequisite for the use of a method from this group is
the existence of common properties which define all casting defects well and also differentiate them from design
features of the test pieces. These prerequisites are often fulfilled only in special testing situations. For this
reason, the true positive and false positive rates of these methods seem to be unsatisfactory in order to gain
acceptance in industry.

Our research and development on metal castings inspection is, however, on going into automated adaptive
processes to accommodate design modifications, and into redundancy in visual information to improve the
performance. We develop a novel methodology called Automated Multiple View Inspection (AMVI). The method
uses redundant views to perform the inspection task of metal castings. This methodology is opening up new
possibilities in inspection field by taking into account the useful information about the correspondence between
the different views of the test object. A first version of AMVI14 with the aid of monocular image sequences
was presented for the quality control of aluminum castings of the automotive industry using X-ray images. In
contrast to the classic inspection methods that analyze individual images, AMVI detects defects by analyzing
multiple views of the same part taken from different viewpoints. Thus, AMVI is similar to the way a (human)
inspector examines a test object: first, the inspector detects anomalous details in an image sequence obtained
from the test object in motion; and second, the inspector tracks in the image sequence the irregularities detected



Figure 2. AMVI Strategy: The tracked potential defects are considered defects, the non tracked potential defects are
considered noise.

in the first step. If the inspector can track them, i.e., if the irregularities are visible among the image sequence, he
or she classifies the test object as defectively. Similarly, the suggested computer-aided method AMVI is able to
detect defects in two steps (see Fig. 2). In the first step, called identification, potential defects are automatically
identified in each image of the sequence using a single filter and no a priori knowledge of the structure of the
test object. In the second step, called tracking, an attempt is made to track the identified potential defects
in the image sequence. Therefore, only the existing defects (and not the false detections) can be successfully
tracked in the image sequence because they are located in positions dictated by the motion of the test object.
Thus, two or more views of the same object taken from different viewpoints can be used to confirm and improve
the diagnostic done by analyzing only one image. A similar idea is also used by radiologists that analyze two
different view X-rays of the same breast to detect cancer in its early stages. Hence, the number of cancers
flagged erroneously and missed cancers may be greatly reduced, see for example a novel method15 that finds
automatically correspondences in two different views of the breast is presented.

The key idea of this multiple view analysis is to gain more information about a test object by processing
images taken at different viewpoints. It is a useful and powerful alternative for examining complex objects were
uncertainty can lead to misinterpretation, because two or more views of the same object taken from different
viewpoints can be used to confirm and improve the diagnostic done by analyzing only one image.

The first AMVI strategy was successfully implemented for calibrated image sequences.14 However, it is
not simple to implement it in industrial environments because the calibration process16 is a difficult task and
unstable. In order to avoid the mentioned disadvantages, we developed new AMVI strategies17, 18 based on the
tracking of potential detects in uncalibrated image sequences. The new approaches tracks the potential defects
based on a motion model estimated from the image sequence self.

In this paper, we review the advances done in this field giving an overview of the multiple view inspection and
showing experimental results obtained on metal castings. The rest of the paper is organized as follows: Section
2 summarizes the inspection of metal casting in terms of hardware and software. Section 3 presents the AMVI
methodology showing the calibrated and uncalibrated approaches. Section 4 shows preliminary results obtained
with the proposed methodology. Finally, Section 5 gives concluding remarks and perspectives for future works.

2. INSPECTION OF METAL CASTINGS

The principle aspects of an automated X-ray inspection unit6 are shown in Fig. 3. Typically, it comprises
the following five steps: i) a manipulator for handling the test piece; ii) an X-ray source, which irradiates the
test piece with a conical beam to generate an X-ray image of the test piece; iii) an image intensifier which
transforms the invisible X-ray image into a visible one, iv) a CCD camera which records the visible X-ray image;
and v) a computer to perform the digital image processing of the X-ray image and to classify the test piece
accepting or rejecting it. The computer may also control the manipulator for positioning the test piece in the
desired inspection position, although this task is normally performed by a programmable logic controller (PLC).
Nowadays, flat amorphous silicon detectors19 are used as image sensors in some industrial inspection systems.
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Figure 3. Schematic diagram of an automated X-ray testing stand.

In such detectors, using a semi-conductor, energy from the X-ray is converted directly into an electrical signal
(without image intensifier). In X-ray examination, X-ray radiation is passed through the material under test,
and a detector senses the radiation intensity attenuated by the material. A discontinuity in the material modifies
the expected radiation received by the sensor.20

In an X-ray image we can see that the discontinuities, such as voids, cracks and bubbles (or inclusions and
slags), show up as bright (or dark) features. The reason is that the X-ray attenuation in these areas is shorter
(or higher). The contrast in the X-ray image between a defect and a defect-free neighborhood of the specimen is
distinctive. Hence, according to the principle of differential absorption20 the detection of discontinuities can be
achieved automatically using computer vision techniques that are able to identify unexpected regions in a digital
X-ray image.

In the computer-aided inspection of castings, our aim is to identify discontinuities automatically using com-
puter vision techniques. The general automated inspection process, presented in Fig. 3, consists of image
formation, preprocessing, segmentation, feature extraction, detection/classification and multiple view analysis.
The existing inspection methods6 follows at least two steps of the general schema presented in Fig. 3 (image for-
mation and segmentation). However, since our approach uses pattern recognition and multiple view techniques,
we show the general schema with the mentioned six steps:

• Image formation: An X-ray image of the casting under test is taken and stored in the computer. The X-ray
image is usually captured with a frame-grabber and stored in a matrix. The eye is only capable of resolving
around 40 grey levels,21 however for the detection of discontinuities in aluminum castings, grey level resolution
must be a minimum of 28 levels. In some applications 216 grey levels are used, which allows one to evaluate both
very dark and very bright regions in the same image.19

• Image preprocessing: The quality of the X-ray image is improved in order to enhance the details of the X-ray
image. Usually, the pre-processing techniques are used to remove noise, enhance contrast, correct the shading
effect and restore blur deformation.

• Image segmentation: The digital images is divided into disjoint regions with the purpose of separating the
parts of interest from the rest of the scene. The idea is to segment those regions that correspond to the defects
of the specimen.



• Feature extraction: Since some structural parts of the object could be erroneously segmented as defectively
regions in previous step, they are denoted as potential defects. Subsequently, additional steps are required to
eliminate the false alarms of the potential defects. The first of these steps is feature extraction, which is centered
principally around the measurement of geometric properties and on the intensity characteristics of regions. It is
important to know which features provide information about discontinuities. With this end, a feature selection
is carried out to find those features that best describe discontinuities, eliminating for example features that are
correlated or provide no information whatsoever.

• Detection/classification: The extracted (and selected) features of each region are analyzed in order to detect or
classify the existing defects. We will differentiate between the detection of discontinuities and the classification
of discontinuities. Detection corresponds to a binary classification, because in the detection problem, the classes
that exist are only two: ‘discontinuities’ (defects) or ‘regular structures’ (no defects), whereas the recognition
of the type of discontinuity (e.g., voids, cracks, bubbles, inclusions and slags) is known as classification of
discontinuity types.

• Multiple view analysis: Multiple view geometry22 is increasingly being used in artificial vision. It describes ex-
plicit and implicit models which relates the 3D coordinates of an object to the 2D coordinates of the digital image
pixel, the geometric and algebraic constraints between two, three and more images taken at different projections
of the object, and the problem of 3D reconstruction from N views. Since in last step (detection/classification)
certain ‘no-defects’ could be classified erroneously as ‘defects’, we use multiple view geometry as a final discrim-
ination step. The key idea is to gain more information about the test object by analyzing multiple views taken
at different viewpoints. Thus, the attempt is made to match or track the remaining potential defects along the
multiple views. The existing defects can be effectively tracked in the image sequence because they are located
in the positions dictated by geometric conditions. In contrast, false alarms can be successfully eliminated in this
manner, since they do not appear in the predicted places on the following images and, thus, cannot be tracked.
The tracking in the image sequence is performed using algebraic multi-focal constraints: bifocal (epipolar) and
trifocal constraints22–24 among others. They are used to ensure the location of corresponding points in different
views. Multiple view analysis is a useful and powerful alternative for examining complex objects were uncertainty
can lead to misinterpretation, because two or more views of the same object taken from different viewpoints can
be used to confirm and improve the diagnostic done by analyzing only one image. The multiple view analysis
will be explained in Section 3.2 in further detail.

3. AUTOMATED MUTIPLE VIEW INSPECTION

Motivated by visual inspections (that are able to differentiate between regular structures and discontinuities
by looking at a moving radioscopic image), we developed a method14 based on geometric computer vision
algorithms22 that considers X-ray images taken at different viewpoints. The procedure is able to perform casting
discontinuity detection automatically in two stages, as shown in Fig. 2, with a single filter and without a priori
knowledge of the test piece structure. In next sections we outline the two stages in further details.

3.1. Identification of Potential Defects

According to Fig. 3, the identification of potential defects is performed after preprocessing, segmentation, future
extraction and detection/classification steps. The segmentation of potential defects identifies regions in each
image of the sequence that may correspond to real defects. Two general characteristics of the defects are used to
identify them: a) a defect can be considered as a connected subset of the image, and b) the grey level difference
between a defect and its neighbourhood is significant. The potential defects are identified without a-priori
knowledge about the structure of the casting. First, a Laplacian-of-Gaussian (LoG) kernel and a zero crossing
algorithm21 are used to detect the edges of the X-ray images. The LoG-operator involves a Gaussian lowpass
filter which is a good choice for the pre-smoothing of our noisy images that are obtained without frame averaging.
The resulting binary edge image should produce at real defects closed and connected contours which demarcate
regions. However, a defect may not be perfectly enclosed if it is located at an edge of a regular structure as
shown in Fig. 4c. In order to complete the remaining edges of these defects, a thickening of the edges of the
regular structure is performed as follows: a) the gradient of the original image is calculated (see Fig. 4d); b) by
thresholding the gradient image at a high grey level a new binary image is obtained; and c) the resulting image is



a

f

c

e

b

d

Figure 4. Detection of potential defects: a) radioscopic image with a small flaw at an edge of a regular structure, b)
Laplacian-filtered image with σ = 1.25 pixels (kernel size = 11 × 11), c) zero crossing image, d) gradient image, e) edge
detection after adding high gradient pixels, and f) detected flaw using the variance of the crossing line profile.

added to the zero crossing image (see Fig. 4e). Afterwards, each closed region is segmented. In order to identify
the potential defects, features are extracted from crossing line profiles25 of each segmented region. Crossing line
profiles are grey level profiles along straight lines crossing each segmented region in the middle. If the variance
of the crossing line profiles is high, the segmented region is classified as potential defect. This is a very simple
detector of potential defects with a large number of false alarms flagged erroneously. However, the advantages
are as follows: a) it is a single detector (it is the same detector for each image), b) it is able to identify potential
defects independent of the placement and the structure of the test object, i.e., without a-priori information of
the design structure of the test object, and c) the detection rate of real defects is very high (more than 90%).

After the segmentation, the automatic detection of discontinuities uses pattern recognition methodology with
binary classification. In this problem a decision is made about whether or not an initially segmented potential
discontinuity in an image is in fact a discontinuity. We outlines the binary classification problem26 where more
than 400 features are evaluated and statistical classifiers are implemented. Unfortunately, in real automatic
discontinuity detection problems there are a reduced number of discontinuities in comparison with the large
number of regular structures. This seriously limits the application of classification techniques such as artificial
neuronal networks due to the imbalance between classes. We presented a new methodology27 for efficient training
with imbalances in classes. The premise of this approach is that if there are sufficient cases of the smaller class,
then it is possible to reduce the size of the larger class by using the correlation between cases of this latter class,
with a minimum information loss. It is then possible to create a training set for a neuronal model that allows
good classification. Additionally, the classification problem was outlined using a neuro-fuzzy approach28 and
fusion strategies.29 By analyzing 50 X-ray images, more than 22 000 regions were segmented, however only 60 of
them were discontinuities (the rest were false alarms). Nevertheless, after the binary classification with neuronal
networks, 57 of 60 discontinuities were detected, with only one ore two false alarms per image.

3.2. Tracking of Potential Defects

According to Fig. 3, the tracking of potential defects is performed using multiple view analysis.23, 24 In this
second stage, an attempt is made to track the potential casting discontinuities in the sequence of images. False
detections can be eliminated successfully in this manner, since they do not appear in the following images and,



thus, cannot be tracked. In contrast, the true casting discontinuities in the image sequence can be tracked
successfully because they are located in the position dictated by the geometric conditions. Multi-focal tensors
are applied to reduce the computation time. Following a 3D reconstruction of the position of the potential
casting discontinuity tracked in the image sequence, it is possible to eliminate those which do not lie within the
boundaries of the test piece.

Figure 5 shows the pseudo-code of the tracking algorithm. The steps are easy to understand according to
this schema:

1) In the segmentation and pattern recognition processes each identified potential defect of the image sequence
is labeled with an unique number. In image p, the np identified potential defects are labeled as ep, ep + 1,
... ep + np − 1 (note that ep + np = ep + 1). We store the coordinates of the potential defect ‘a’ in vector
xa and the features that characterize the potential defect in vector xa. The tracking takes place in the
following three steps:

2) We look for the np potential defects in image p that have corresponding potential defects in the next m
images (we use m = 3 in order to reduce the computational cost). The corresponding potential defects are
those that are similar enough and are located in places that fulfill the bifocal constraints, this is evaluated
in functions ‘similar’ and ‘bifocal’ respectively. If a potential defect is not matched with any other one, it
will eliminated and considered as false alarm, whereas the obtained N2 duplets are stored in matrix B.

3) From the matched potential defects stored in matrix B, we look for triplets that fulfill trifocal constraints.
A row i in matrix B has two potential defects (a, b) that fulfill the criteria in two views. We look for other
rows j in B where the first element is equal to b. Thus, we find a triplet (a, b, c). If the potential defects a,
b and c fulfill the trifocal constraints (‘trifocal’), we store the triplet in a new row of matrix C. Potential
defects that do not find correspondence in three views will be eliminated.

4) We repeat the last step for four views and we store the quadruplets in matrix D. Since our detector cannot
guarantee the identification of all real flaws in more than four views, a tracking in five views could lead
to the elimination of those real flaws that were identified in only four views. However, if a potential flaw
is identified in more than four views, more than one quadruplet can be detected. For this reason, these
corresponding quadruplets are joined in a trajectory that contains more than four potential defects.14

Further details of the tracking algorithm can be found in Ref. 30. An example is illustrated in Fig. 6.
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Figure 5. Tracking algorithm.
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Figure 6. Automated multiple view inspection: a) image sequence with a small discontinuity (see arrow), b) identification
of potential discontinuities, c) search of matching in two views, d) remaining potential discontinuities after matching in
two views, e) search of triplets, f) tracking in more views, and final detection, the false alarms are eliminated without
discriminating the real discontinuities.
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Figure 7. Block diagram of the automated multiple view inspection.

Each step of the automated multiple view inspection can be understood as a detector block, the behavior
of which is shown in Fig. 7. The potential defects (PDi) consisting of existing defects and false alarms are
classified as either new potential defects (PDi+1) or no-defects (NDi+1) as shown in Fig. 7a. In a training phase,
each detector block is tuned so that the maximal number of false alarms is eliminated from the potential defects



without discriminating the existing defects (see θN in Fig. 7b). The entire process is illustrated in Fig. 7c.
The common strategy is clearly manifested: the detector blocks are configured in cascade, and each detector
block eliminates a fraction of the false alarms contained in the potential defects while the existing defects are
preserved. The throughput cycle can be considerably incremented if we use an additional decision boundary (see
θD in Fig. 7b) which guarantee the detection of defects in previous stages without computing the next steps.

We developed two different approaches to estimate the multi-focal tensors required for the tracking algorithm:

i) Calibrated Approach: In14 we performed the tracking using a calibrated image sequence , i.e., the model 3D
→ 2D was a-priori known because it was obtained in an off-line process called calibration.16 The calibration of an
imaging system is the process of estimating the parameters of the model, which is used to determine the projection
of the 3D test object into its 2D digital image. This relationship 3D→2D can be modeled with a transfer function
F : R3 → R2. Using this model the multi-focal tensors can be calculated in order to evaluate the multi-focal
constraints for the correspondences of the potential defects in the image sequence.22 The calibration was
performed using the well-known photogrammetric calibration,31 in which a calibration object whose geometry
in 3D space is known with high accuracy. Using this technique a true reconstruction of the 3D space without a
scale factor is achieved. In the calibration, we estimate the parameters of a geometric model based on n points
whose 3D object coordinates Mi are known, whose 2D image coordinates wi are measured, for i = 1, ..., n. Using
the model we obtain the reprojected points w′

i = F (Mi, θ), i.e., the inferred projections in the digital image
computed from the calibration points Mi and a parameter vector θ. The calibration is performed in each image
of the sequence by minimizing the objective function defined as the mean-square discrepancy between measured
points wi and inferred points w′

i.
22 Usually, the calibration problem is a non-linear optimization problem. In

general, the minimization of the objective function has no closed-form solution. For this reason, it must be
iteratively minimized starting with an initial guess θ0 that can be obtained from nominal values or preliminary
reference measurements.

ii) Uncalibrated Approach: The calibration is a very difficult task because the iterative estimation of the
parameters is very sensible to the initial guess. In addition, the vibrations of the imaging system induce inac-
curacies in the estimated parameters of the model, i.e., the calibration is not stable and the computer vision
system must be calibrated periodically (off-line) in order to avoid uncertainty. For these reasons, we developed
approaches based on the tracking of potential detects in two views17, 18 and in three views18 using uncalibrated
image sequences, in which it was not necessary to calibrate the imaging system. This new approaches track the
potential defects based on a motion model estimated from the image sequence itself. Thus, we obtain a motion
model by matching structure points of the test object in the images as shown in Fig. 8. The structure points
are matched using B-Spline curves and correlated curve sections of the structure.17, 18 Using RANSAC22 the

Figure 8. Block diagram of the uncalibrated automated multiple view inspection: a) estimation of motion model, b)
detection of defects.18



matched structure points are employed to estimated the bifocal and trifocal tensors required for the multiple view
analysis. In this sense, we do not calibrate the image sequence, we only estimate the bifocal and trifocal tensors
required for the tracking. The great disadvantage of this approach is the inherent difficulty in identification of
the structure points (and thus the estimation of the motion model) from the test object itself, when the images
of the test object do not significantly differ from each other in the sequence, e.g., a sphere rotating around its
vertical axis.

Once the system is calibrated (in the calibration approach) or the motion model is estimated (in the un-
calibrated approach) the same algorithm shown in Fig. 5 is used to track the potential defects. The tracking
algorithm requires the bifocal and trifocal tensors between the views. In the first approach the tensors are ob-
tained from the projection matrices estimated after the calibration, whereas in the second approach the tensors
are obtained using corresponding points of the test object in two and three views.

4. EXPERIMENTAL RESULTS

Several sequences of radioscopic images of aluminum wheels with known flaws were inspected. The sequence of
radioscopic images was taken by rotation of the casting at 50. Defects were existing blow holes (with ∅ = 2.0 ∼ 7.5
mm) and artificial defects produced by drilling small holes (∅ = 2.0 ∼ 4.0 mm) in positions of the casting which
were known to be difficult to detect (see some examples in Fig. 9). Table 1 summarizes the results obtained
on real data using calibrated and uncalibrated approaches. We calculate the performance of the identification
and the performance of the tracking separately. In the table, true positives are the number of defects correctly
detected and the percentage is calculated related to the number of the existing defects, whereas false positives (or
false alarms) correspond to the number of ‘no-defects’ misclassified as ‘defects’ and the percentage is given related
to the number of detected potential defects. We present three implementations of the calibrated approach. They
perform the tracking in three, four and five views (cases C-I, C-II and C-III respectively).14 We observe that
the number of false alarms in the identification is enormous. However, the results are perfect for four views (case

Figure 9. Detection in six images using C-II algorithm.

Table 1. Performance of calibrated and uncalibrated approaches.



C-II) where all defects are detected without any false alarms. The verification of the correspondence on three
views flags too many false alarms. On the other hand, with 5 views we cannot ensure the segmentation of a defect
in five views, for this reason some defects cannot be detected. We increase the performance in the segmentation
in the uncalibrated approaches reducing the number of false alarms significantly. In case U-I17 we perform the
tracking in only two views using B-spline curves for the motion model. In case U-II18 and U-III18 the tracking is
done in two and three views respectively using correlated curve sections of the structure for the motion model.
The results of case U-III are promising because all defects to be tracked, i.e., defects that are present in three
views, could be tracked, with only a few number of false alarms. We observe that the performance obtained in
calibrated approach is higher, however the calibration is in many cases an excessively difficult and unstable task
that can be avoided using an uncalibrated approach.

5. CONCLUSIONS

Automated visual inspection remains an open question. Many research directions have been exploited, some very
different principles have been adopted and a wide variety of algorithms have been appeared in the literature of
automated visual inspection. Although there are several approaches in the last 25 years that have been developed,
automated visual inspection systems still suffer from i) detection accuracy, because there is a fundamental trade
off between false alarms and miss detections; and ii) strong bottleneck derived from mechanical speed (required
to place the test object in the desired positions) and from high computational cost (to determine whether the
test object is defective or not). In this sense, Automated Multiple View Inspection offers a robust alternative
method that uses redundant views to perform the inspection task. We believe that the method is opening up new
possibilities in inspection field by taking into account the useful information about the correspondence between
the different views of the test object. Two approaches were developed in the last years: the calibrated and
the uncalibrated approaches. Both of them achieve very good performance. However, the calibration of the
first approach is a very complicated task, and the identification of structure points in the second approach is
inherently difficult when the images of the test object do not significantly differ from each other in the sequence.
In order to avoid the mentioned problems, we are working on an on-line calibration of the multiple view system
using a calibration object attached to the test object which is imaged in all views. Thus, the images have an
enough number of points to calibrate the system.
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