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Abstract. Automated inspection using multiple views (AMVI) has been
recently developed to automatically detect flaws in manufactured objects.
The principal idea of this strategy is that, unlike the noise that appears
randomly in images, only the flaws remain stable in a sequence of images
because they remain in their position relative to the movement of the ob-
ject being analyzed. This investi- gation proposes a new strategy, based on
the detection of flaws in a non- calibrated sequence of images. The method
uses a scheme of elimination of potential flaws in two and three views. To
improve the performance, intermediate blocks are introduced that elimi-
nate those hypothetical flaws that are regular regions and real flaws. Use
is made of images captured in a non-calibrated vision system, so there are
no optical, geometric and noise disturbances in the image, forcing the pro-
posed method to be robust, so that it can be applied in industry as a qual-
ity control method in non-calibrated vision systems. the results show that
it is possible to detect the real flaws and at the same time decrease most
of the false alarms.

Keywords: computer vision, multiple view geometry, automated visual
inspection, defect detection, industrial applications.

1 Introduction

Since the early 1980s various authors have shown the need to introduce Auto-
matic Visual Inspection (AVI) systems in production processes [1,2,3]. According
to them, there is no methodology applicable to all cases, since development is
an ad hoc process for each industry. However, there is clear consensus that the
use of AVI technologies can reduce significantly the cost and time spent in the
process of inspection, allowing the replacement of a large number of inspectors
of average training by a limited group of highly trained operators [4]. This has
led in recent years to increased productivity and profitability, and to a reduction
in labor costs [5]. In spite of their advantages, AVI systems have the following
problems: i) they lack precision in their performance, since there is no balance
between undetected flaws (false negatives) and false alarms (false positives); ii)
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they are limited by the mechanical rate required for placing the object in the
desired position; iii) they require a high computer cost for determining whether
the object is defective or not; and iv) they generate high complexity in the con-
figuration and lack of flexibility for analyzing changes in parts design. For those
reasons, AVI remains as a problem open to the development of new applications.

To counteract the difficulties mentioned above, in recent years a new method-
ology has been developed to detect flaws automatically making use of the po-
tential of multiple views called Automatic Multiple View Inspection [6,7,8,9]
(AMVI). The main objective of AMVI is to exploit the redundancy of informa-
tion in multiple views that have corresponding parts of the object that is being
analyzed, so the information captured from different viewpoints can reinforce
the diagnosis made with a single image. This original strategy, presented in [6],
requires prior calibration of the image sequence acquisition system. In the cal-
ibration we seek to establish the transfer function that projects a 3D point in
the object onto a 2D point on the image. Unfortunately, the calibration process
is difficult to carry out in industrial environments due to the vibrations and
random movements that vary in time and are not considered in the original
estimated transfer function. An alternative method for carrying out the AMVI
strategy in non-calibrated sequences was presented in [7] for sequences with two
images, and in [8] for sequence with three images. In order to achieve an ade-
quate performance, the number of false alarms to be tracked must be reduced.
For that reason, the objective of our research is to improve the performance of
the original AMVI scheme by introducing intermediate classifiers between the
changes of views in order to reduce the number of false alarms and increase
the performance in the detection of real flaws, and additionally to perfect the
method of detection of control points to avoid calibration.

The remainder of this document is organized as follows: Section 2 includes
background information on AMVI methodology; Section 3 deals with the pro-
posed method, includes a description of the methodology used to generate artifi-
cial control points, and to estimate the fundamental matrix and trifocal tensors
robustly; Section 4 includes the new intermediate classifier methodology; Section
5 shows the experimental results; and finally, Section 6 presents the conclusions
and future work.

2 Background of Multiple Automatic Visual Inspection

Geometric analysis with multiple views represents a new field of analysis and
development of machine vision [11,12]. The main idea is to get more information
on the test object by using multiple views taken from different viewpoints. Using
this idea, a new methodology for detecting flaws automatically, called Automatic
Multiple View Inspection (AMVI) was developed in [6]. AMVI methodology
is based mainly on the fact that only real flaws and not false alarms can be
seen in the image sequence because their position remains stable relative to the
object’s motion. Therefore, having two or more views of the same object from
different viewpoints makes it possible to discriminate between real flaws and false
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Fig. 1. Visualization of the general model of AMVI for the identification and tracking
of hypothetical flaws in two and three views
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Fig. 2. Flaw detection: a) section of a radioscopic image with a flaw inscribed on
the edge of a regular structure; b) application of the Laplacian filter on an image
with σ = 1.25 pixels (kernel = 11x11); c) zero crossing image; d) image gradient; e)
detection of edges after increasing them to the highest levels in the gradient; and f)
detection of flaws using the variance of the crossing line profile (see details in [10])

alarms by means of a geometric tracking process in multiple views. AMVI has
been developed under two schemes: calibrated and non-calibrated. Both methods
detailed below share the following two steps: identification and tracking.
Identification: It consists in detecting all the anomalous regions or hypothet-
ical flaws in each image of a motion sequence of the object, without a priori
knowledge of its structure. The segmentation of hypothetical flaws allows the
identification of regions in each image of the sequence which may correspond to
real flaws (Fig.2) (see details in [10]). The process that follows is to extract the
characteristics of each hypothetical flaw after identifying the regions by the pre-
vious procedure. Various investigations of the extracted characteristics have been
described in [10,13]. This information makes it possible to determine if a flaw is
corresponding in the multiple view analysis, according to the new intermediate
classification system described in Section 4.
Tracking: It consists in following in each image of the sequence the hypothet-
ical flaws detected in the first step, using the positions forced by the geometric
restrictions in multiple views. If the hypothetical flaws continue through the
image sequence, they are identified as real flaws, and the object is classified as
defective. On the other hand, if the hypothetical flaws do not have correspon-
dence in the sequence, they will be considered as false alarms (Fig.1). The AMVI
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methodology has as its main foundation the fact that only real flaws, and not
false alarms, can be seen throughout the image sequence, because their position
remains stable relative to the object’s motion.

AMVI is currently a useful tool and a powerful alternative for examining
complex objects. It provides two independent approaches: those based on the
calibration of a 3D→2D transfer function in the multiple view projection [6],
and those based on the estimation of the motion of the control points in corre-
spondence for pairs [7] and triplets of views [8] without prior calibration. A brief
description of each is given below. i) Calibrated method: The calibrated im-
age sequence flaw tracking method was first used as a quality control method for
aluminum castings [6]. This approach consists in the estimation of the 3D→2D
model through an off-line process called calibration [14], which is the process
that allows the determination of the model’s parameters to establish the pro-
jection matrix of a 3D point of the object at a 2D point of the digital image.
Unfortunately, the model’s parameters are usually nonlinear, which implies that
the optimization problem does not have a closed solution. For that reason, it
is finally impractical in industrial environments, where there are vibrations and
random movements that are not considered in the original transfer function, i.e.,
the calibration is not stable, and the computer vision system must be calibrated
periodically to avoid this error.
ii) Non-calibrated method: To avoid the problems involved in the calibrated
method, a new system was developed using a sequence of non-calibrated images
for two views [7]. This system does not require prior calibration. On the contrary,
it can estimate the model of the motion using the images of the sequence in a
procedure that can be carried out in line with the computer vision system.

In general, to achieve high precision in the motion model it is necessary to de-
termine a large number of correspondences of control points in pairs and triplets
of images in sequence. Many times this condition is difficult to achieve, and for
that reason the RANSAC algorithm [11] was used in [8].

In our work, as will be seen in following sections, the attempt is made to im-
prove the non-calibrated approach. First, our proposed method does not involve
affine transformations, on the contrary, it aims at estimating correspondences
through a geometric process in multiple views. Second, we use intermediate
blocks that eliminate those hypothetical flaws that are regular regions and real
flaws in order to increase the performance.

3 Proposed Method

Below is an explanation of each of the stages of the non-calibrated AMVI process
with intermediate classifiers. The proposed scheme has three steps (A, B and C)
detailed in Fig.3. They correspond to the stages of identification (A), extraction
of control points (B), and tracking (C).

A. Identification of Hypothetical Flaws: The identification stage allows the
detection of the hypothetical flaws by means of an algorithm without a priori
knowledge of the object that is analyzed. Its most important characteristic is
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the high percentage in the detection of real flaws, in spite of the existence of
false alarms. Using the method of segmentation and extraction of characteristics
described in [10] we determine all the regions with a high degree probability
of being real flaws. The next step is to determine the position of the center of
mass for each hypothetical flaw. For each image, mi will be used to denote the
center of mass of the segmented region ri. In homogenous coordinates, mi =
[xi, yi, 1]Trepresents the 2D spatial position of a point i. This information makes
it possible to analyze the trajectories of the hypothetical flaws in the subsequent
stages of the proposed method.

B. Robust Control Points: The control point extraction stage allows the
determination of corresponding points in multiple views. The process has two
general steps: identification of control points, and matching of control points.
The first step consists in determining the possible regions that can be in cor-
respondence. The second step allows discarding possible combinations of corre-
spondence that have a large error, storing a subset of correspondences with the
highest precision. In our investigation we proposes a new curve alignment sys-
tem by maximizing Pearson’s correlation coefficient [15] in the correspondence
between 2D curves, using an isometric transformation between the curves. We
use this scheme because in the analysis of manufactured products the object that
is analyzed is usually not deformable. This premise justifies the use of a rigid
transformation method with which, given a rotation and displacement, it is pos-
sible to estimate a correspondence between the object’s control points. However,
due to the object’s rotation, some regions can remain occluded, and therefore
the proposed system must consider that only some regions retain this transfor-
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Fig. 3. Visualization of the general model for the identification, control point estima-
tion, and tracking of hypothetical flaws in two and three views
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mation. The proposed robust system of control points consists of two stages that
are detailed below: matching of regions, and matching of control points.

B.1) Matching of regions: It consists in establishing the correspondence be-
tween regions of each view and not the control points. The process designed
consists of four stages: First, segmenting those regions in which the intensity
of the object is distinguishable from the background, using the method of Otsu
[16]. Second, extracting a set of characteristics for each segmented region. This
consists in extracting the centers of mass, the area, and the order moments of
Flusser-and-Suk [17] of each region in the three views. Third, determining the
matching between the segmented regions using the characteristics extracted be-
fore, and relating those regions having greater similarity according to a Euclidian
distance metric. Fourth, once the correspondences between the regions have been
determined, extracting the edges of each region and smoothing them to decrease
the noise of each curvature. For that we calculate the perimeter of each seg-
mented region and generate a list in parametric form as Zs = [xs, ys], where
s = 0, . . . , L − 1 is the index of the list of pixels ordered in a turning direction,
and L is the number of pixels of the region’s perimeter. Using this parametric
form, we generate the Fourier descriptors [18], transforming the Zs coordinates
in a complex value us = xs + j ·ys. This signal with period L is transformed into
the Fourier domain by means of a discrete Fourier transform (DFT) [19]:

Fn =
L−1∑

s=1

us · e−j· 2π·s·n
L (1)

The modulus of the complex Fourier coefficients describes the energy of each
descriptor. Therefore, if we choose the highest energy coefficients (above 98%)
and return to real space with the inverse discrete Fourier transform (IDFT) we
get a smoother curve with less noise. However, when applying the elimination
of some Fourier coefficients, the original curve is transformed into a new curve
Cs = [x′

s, y
′
s], where, Cs �= Zs.

B.2) Matching of Control Points: It is a process in which the correspondence
of points of the curve is established for each view. Using the Fourier processing
described above, we define a curve C1 corresponding to a region in the first view,
and a curve C2 corresponding with C1 in the second view. For both curves to
keep the same distance and be aligned it is necessary to select a section of each
list having equal length.

Let P , a section of curve C, be such that P = C(δ), where δ = [si, · · · , sj ],
where i, j ∈ [1, · · · , n]. In this way there is a section P1 in the first view that
has the same length as section P2 in the second view. These sections of the
curve do not necessarily have a correspondence, and for that we define a shift
operator Θ(P, λ) that displaces list P by λ positions in a turning direction.
Operator Θ uses the function “mod” (modulus after division) to determine the λ
relative positions that list C, of length P , must turn. Using the above definitions,
we design an alignment function as the maximization of Pearson’s correlation
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coefficient ρ(α, β) [15] between the isometric transformation of a section of P1,
with the shift of section P2 with a jump λ

{θ, Δsx, Δsy, λ} = arg max ‖ρ ([R, t][P1], Θ(P2, λ))‖ (2)

where,

R =
[
cos θ − sin θ
sin θ cos θ

]
, t =

[
Δsx

Δsy

]
(3)

This maximization function must find parameters {θ, Δsx, Δsy, λ} to estimate
an alignment between sections P1 and P2. The main advantage of using this
function is that it does not require a perfect alignment because the correlation
coefficient is maximum when the displacement is linear. Another advantage is
that curves P1 and P2 are open, so the alignment determines only sections that
are corresponding, allowing control points to be obtained for curves that have
partial occlusion in corresponding regions. Also, the use of parameter λ allows
finding a position relation for curve C2 with P1, and in this way, while curve P2
adjusts its shift, curve P1 adjusts its translation and rotation to become aligned.

C. Tracking of Potential Flaws: The tracking stage allows tracking of hypo-
thetical flaws obtained in the identification stage. The method for carrying out
the tracking takes place through multiple view geometric analysis [11].

C.1). Two Views: The mathematical formulation that allows relating two
points in stereo images is called the fundamental matrix [11]. Within the AMVI
field its use is vital because it allows the trajectories of hypothetical flaws to be
analyzed in two views and to verify if the flaws are corresponding. In this case,
if point mp of the first view corresponds to mq, in the second view, the following
relationship is established:

mT
q · Fpq · mp = 0 (4)

where Fpq is the fundamental matrix of the projection of points mp and mq in
homogenous coordinates as [xp, yp, 1]T and [xp, yp, 1]T, respectively. Once the set
of corresponding positions has been generated in each region in both views by
the method proposed in section 3-B, we use the robust RANSAC algorithm to
estimate the fundamental matrix [11].

In our investigation we used the method proposed by Chen et al. [20] to make
an initial estimation of the fundamental matrix. The modification of Chen’s
method consists in choosing a subset of candidate points by means of the epipolar
restriction. So in our method we use a combination of the algorithm of Hartley
and Zisserman [11] with the normalization of the 2D coordinates, followed by an
estimation of the fundamental matrix through the biepipolar restriction [20].

Therefore, using the centers of mass for each hypothetical flaw generated in
section 3-A, we generate the epipolar line thus lqi = FT

pq · mpi = [lx, ly, lz]i,
where lqi is the epipolar line of flaw i in the second view, and mpi is the center
of mass of flaw i in the first view. Once the epipolar line of flaw i of the first
view has been generated, it is necessary to determine the distance between the
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corresponding flaw in the second view and the epipolar line. This distance is
determined through the practical bifocal constraint [12] as

d (mpi,F,mqj) =
|mT

qj · F · mpi|√
l2x + l2y

< ε (5)

For any flaw i in the first view and flaw j in the second view, we define
mpi and mqj to be the centers of mass of the regions rpi and rqj in each view,
respectively. If the Euclidean distance between mqj and the epipolar line of mpi

is less than a given ε, this implies that the hypothetical flaw in the second view
is related to mpi (Fig.4). If the hypothetical flaw is found in both images, then
it is considered to be a flaw in the bifocal correspondence, if this is not the case,
the region is discarded.

C.2) Three views:
The initial estimation of the tensors is carried out with Shashua’s four trilin-

earities [21]. In particular we use an estimation of the tensors that maximizes
the number of inliers according to the RANSAC trifocal algorithm. Furthermore,
the estimation of the tensors was made with the normalized linear algorithm [11,
pp.383]. Once the trifocal tensors have been determined, it is possible to verify
whether three points mp, mq and ms are corresponding in the first, second, and
third view, respectively. For that we use the re-projection of the trifocal tensor
in the third view using the positions mp and mq in the first two views applying
the point-line-point method [11, pp.373]. We use only the centers of mass of the
first two views which fulfill the bifocal relationship from section 3-B. Let us de-
fine ms as the center of mass of region rs from the third view. If the Euclidean
distance between the real position of the hypothetical flaw ms and that which
is estimated with the trifocal tensors, m̂s, is less than some value ε, we take the
hypothetical flaw to be a real flaw, since it complies with the correspondence in
three views as ds = ‖m̂s − ms‖ < ε. Should the hypothetical flaw in the third
view not agree with the projection of the tensor, it is discarded, as it does not
fulfill the trifocal condition [21].

Epipolar
line

(a) (b) (c)

Fig. 4. Epipolar line generated automatically from the fundamental matrix: a) first
view; b) zoom-identification of a hypothetical flaw; c) intersection of the epipolar line
in the second view with one or more corresponding hypothetical flaws
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4 Intermediate Classifier Block Method

The Intermediate Classifier Block (ICB) method proposed uses the classifier en-
semble methodology [22], in which different linear classifiers do the classification
and then, through the majority of votes technique, the final classification decision
is made. The objective of the ICB method is to eliminate those correspondences
between hypothetical flaws that have a low probability of being the same flaw in
the different views. The ICB method has as input the distribution of two classes:
Flaws (F) and Regular Structures (RS). According to this distribution, the clas-
sifier must determine the region of space where there are actually flaws only
starting from point θF , and regular structures from θS (Fig.5a). Once these re-
gions are extracted, only the hypothetical flaws contained in the region in which
the classifier cannot verify with high probability the kind of class to which they
belong are assigned to a new class called Potential Flaw (PF) (Fig.5b). This re-
duction avoids the analysis of the trajectories of all the flaws in correspondence,
thereby improving the performance.

The simplest form of the previous classifier is reflected in the linear separation
of the RS, PF and F regions, using the V1 and V2 features (Fig.5b). In the case
of having three features [V1, V2, V3], the separation between them generates a
three-dimensional volume bounded by the cuts of the two-dimensional separa-
tions, containing only the hypothetical flaws considered as potential flaws (PF)
(Fig.5c). This three-dimensional volume generated from the combination of the
two-dimensional features [V1, V2], [V1, V3] and [V2, V3] contains the potential
flaws that will be analyzed in the following phases of the multiple views analy-
sis. On the other hand, the regions outside the three-dimensional volume can be
flaws or regular structures, depending on the position in which the hyperplanes
are projected. Our analysis considers the combination of two to seven features,
giving rise to multidimensional section maps generated from the two-dimensional
combinations. The methodology used by the ICB consists of a series of stages
detailed below.
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Fig. 5. (a) distribution of classes of hypothetical flaws between the views; b) distri-
bution of classes in two dimensions with the linear separation of the RS, PF and F
regions; c) Three dimensional representation of the ICB classification system
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i) Assessment method of the ICB classifier: Our problem falls within the
framework of supervised classification problems, since the class to which each
potential flaw belongs is known. Using this information, the classification model
is designed by means of the cross-validation method [23]. To compare the results
of the various configurations of the classifier we use two parameters known as
the ROC curves [24], sensitivity and 1-specificity, which allow the measurement
of the performance of a classification of two classes. The main characteristic of
the ROC curve is that it allows the comparison to be independent of the sample.

The objective is for the sensitivity to be maximum (100%) and at the same
time the 1-specificity to be minimum (0%), and in this way the classifier guaran-
tees an ideal classification for two classes. In practice this is difficult to achieve,
because it depends on the classifier’s internal parameters, and it can be quite
variable with respect to the noise existing in the data.

ii) Selection of characteristics: The characteristics selected by the ICB
classifier are determined automatically using the information contained in each
potential flaw, each of which has associated a characteristics vector. To determine
the combination of characteristics that separate the classification space we will
use the Take-L-Plus-R characteristics selection algorithm [25]. The objective
of this algorithm is to determine the best characteristics that allow a greater
separation of the space between the classes. In our research we used Fisher’s
discriminant as the criterion function [26].

iii) Linear Classification: We use a linear classification system that allows
finding the hyperplanes that best separate the solution space. For that, the
classification process must fit the following linear equation wT ·v+w0 > 0, where
w = Σ−1

w ·(v̄1−v̄2) are the hyperplane parameters, Σw is the interclass covariance
matrix, and v corresponds to the characteristics vector chosen earlier. Finally,
factor w0 for two classes is determined according to the mean of characteristics
v̄1 and v̄2 and the probabilities of each class pe1 and pe2 according to

w0 = −1
2

· (v̄1 + v̄2) · Σ−1
W · (v̄1 − v̄2) − log

(
pe1

pe2

)
(6)

Once an initial solution is obtained for parameters w, the optimization prob-
lem tries to fit the hyperplanes so that (7) is maximum, and in that way always
ensure that we are obtaining a high performance for each subselection of char-
acteristics.

{w, w0} = argmax {Sn(w, w0)} s.t. Sp(w, w0) = 1 (7)

This problem has been solved by the Nelder-Mead Simplex method [27]. Then
the information from the selected straight lines and characteristics is used to
evaluate the performance of the classifier on the test data. At some time each
register is used to build the model or to be part of the test. This is necessary
because of the low number of registers available at the time of identifying the
hypothetical flaws, and for that reason we used the ensemble of classifiers [22].
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5 Experimental Results

This section presents the results of experiments carried out on a sequence of
70 radioscopic images of aluminum wheels (see some of them Fig.6). There are
twelve known real flaws in this sequence. Three of them are flaws detected by
human visual inspection (∅ = 2.0 ∼ 7.5 mm). The remaining nine were generated
by a drill which made small holes (∅ = 2.0 ∼ 4.0 mm) positions that would make
their detection difficult. The method was applied to 70 radioscopic images (578
x 768 pixels) of aluminum wheels generated in [6] for which the angle of rotation
of 5◦ is known for each sequence in the image.

We separated the analysis into three steps. i) identification: in this step poten-
tial flaws are automatically identified in each image. The result of the identifica-
tion generates a data base that contains 424 registers with 11 characteristics of
the total hypothetical flaws detected in the sequence, 214 registers are real flaws,
and 210 registers are regular structures or false alarms that must be reduced. ii)
tracking: in this step we track the identified potential flaws in the image sequence
in two and three views. iii) ICB method : finally, we analyzed the performance
of the classifiers inserted in two and three views, to filter the hypothetical flaws
between the views. The last two steps are detailed below.

i) Performance with two views: The results indicate that the model detects
100% of the real flaws that are corresponding in two views (Table 1, Track 2
Views). This validates the assumption of correspondence between the position of
the real flaws and implies that automatic detection with the fundamental matrix
allows the detection of corresponding flaws that are contained on the epipolar
line, and this agrees with the results given in [6] and [7]. There is, however, a
large number of false alarms in sequence (198/388=51%), which must be reduced
using a third view.

ii) Performance with three views: After completing the matching of possible
pairs of flaws in both images, we extend the detection of flaws to the third image
in the sequence. In this case the performance remains at 100% of real flaws
detected in sequence, but it is seen, however, that it has not been possible to
eliminate all the false alarms (Table 1, False Alarms). Furthermore, it is seen
that the ICB method in two and three views has allowed the detection of a large
part of the real flaws (F) and regular structures (RS) with high probability,
allowing them to be separated from the multiple views analysis.

Table 1. Performance of the Uncalibrated Tracking

Step Flaws
Regular
Structure

Real
Flaws

False
Alarms

Track 2-Views 190 198 100% 51.0%
ICB-2 151 94 100% 24.2%
Track 3-Views 137 45 100% 11.6%
ICB-3 18 17 100% 4.4%
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Table 2. Comparison between different calibrated and non-calibrated tracking

Method Tracked
Year-
Reference

Analyzed
Images

True
Positives

False
Positives

Calibrated
3 2002 [6] 70 100% 25%
4 2002 [6] 70 100% 0%
5 2002 [6] 70 83% 0%

Uncalibrated

2 2005 [7] 24 92.3% 10%
2 2006 [8] 70 100% 32.9%
3 2006 [8] 70 98.8% 9.9%
2 2007 [9] 70 86.7% 14%
2 2007new 70 100% 24.2%
3 2007new 70 100% 4.4%

iii) Performance of ICB: The greatest advantage of ICB classifiers for two and
three views is the extraction of flaws and regular structures with high probability.
The results indicate a clear relation between the performance of the ICB method
for two views and the number of characteristics chosen. In this way, with the
five best combinations of characteristics the performance in the classification is
ideal, but there is a clear decrease in the number of flaws extracted by the ICB
method (Fig.7a). In the case of three views, the number of correspondences is
drastically reduced because the correspondence of a hypothetical flaw in three
images has a lower probability of occurrence (Fig.7b).

iv) Comparison with other methods: Finally, we present a summary of the
performance obtained with the calibrated and non-calibrated AMVI approxi-
mation (see Table 2). It shows the performances corresponding to the tracking
phase of the different investigations carried out with an non-calibrated sequence
of X-ray images designed in [6]. According to the results generated in two and
three views by the same authors in 2006 [8], it is seen that the intermediate
classification block (ICB) technique has allowed a reduction of 8.7% in the cor-
respondence number in two views, and of 5.5% in the case of three views, with a
4.4% remainder that it has not been possible to eliminate by geometric analysis.

1 2 3

(a) (b) (c)

Fig. 6. Generalized flaw estimation process in one sequence of three views: a) segmen-
tation of hypothetical flaws; b) projection of the epipolar line in the second view using
the robust fundamental matrix; c) projection of the coordinates of images 1 and 2 using
trifocal tensors over the third view
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Fig. 7. Sensitivity and 1-Specificity performance of the ICB classifier, and percentage
of fails reduction of ICB classifier, (a) for two views , b) for three views

6 Conclusions

This investigation presents the development of a new flaw detection algorithm
in manufactured goods using an non-calibrated sequence of images. Using new
AMVI methodology with the ICB elimination system, we have designed a novel
system of automatic calibration based only on the spatial positions of the struc-
tures. We based our investigation on the assumption that hypothetical flaws are
real flaws if their positions, in a sequence of images, are in correspondence be-
cause they remain stable in their position relative to the movement of the object.
With respect to the investigation carried out in [8], we have introduced the cal-
culation of corresponding points generated artificially through the maximization
of Pearson’s correlation coefficient [15] for two curves. Our results indicate that
it is possible to generate an automatic model for a sequence of images which
represent the movement between the points and the regions contained in them.
In this way we can use as reference points the edges of the structures or areas
with no loss of information using a nonlinear method. The main advantage of
our model is the automatic estimation of movement. Our future aim is to reduce
the number of false alarms by means of a method of final verification of the flaws
in correspondence, and an analysis of the ICB classification method with other
ensemble classification and probabilistic techniques.
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