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The detection of welding flaws by means of nondestructive inspection methods 

remains open to the development of new algorithms and methods of inspection. 

One of the most widely used techniques is radiographic analysis, which requires 

interpretation by trained inspectors. Unfortunately, manual inspection is subject 

to various factors that can alter performance in the detection of the faults. An 

automated welding fault segmentation algorithm is presented using a set of 

digitized radiographic images. The result of the study has allowed the 

development of the following scheme: first, use the median filter to reduce 

noise; second, apply the bottom-hat filter to separate the hypothetical faults from 

the background; third, determine the segmented regions by binary thresholding; 

fourth, use the filters provided by morphological mathematics to eliminate over 

segmentation; and fifth, use the watershed transform to separate the internal 

regions. The results of the study have generated a general ROC curve on a set of 

10 images with an area Az=93.6%. 

 

1.  Introduction 

 

Quality control of manufactured products has become one of the main objectives 

of production processes. For its evaluation several inspection and analysis 

techniques are available that can be applied during the manufacturing process, 

but all of them depend on the fulfillment of safety standards imposed by the 

manufacturer or by some regulatory standard. Although some manufacturers 

tolerate faulty products, for others products safety plays a critical role. 

Traditionally, quality control has been carried out manually by an inspector, 

because human inspection is flexible and adaptable to new situations that have 

not been considered, but this process itself has serious drawbacks such as i) Time 
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consuming: it takes a large amount of time and it is dependent on weariness and 

monotony at work; ii) Inconsistency: it depends on the inspector’s capacity and 

experience for its analysis. These factors have led industry to gradually replace 

human inspection by automatic methods. One of the conventional forms of 

applying automatic inspection has been through machine vision systems. The 

objective is to determine automatically if the product fulfills a set of previous 

specifications using only visual information. This methodology is known as 

Automatic Visual Inspection (AVI), a name that encompasses a large set of 

analyses and algorithms that are divided into a series of processing stages that 

include image formation, preprocessing, segmentation, extraction of 

characteristics, and classification. 

AVI has largely solved visual quality control, setting precise and objective 

control policies [1]. The main objective is to determine whether a product falls 

within or outside the range of acceptance in the manufacturing process. To that 

end it has to fulfill two basic conditions to improve product quality: efficiency 

and speed [2]. i) Efficiency means detecting the large number of defective 

products, and at the same time rejecting the smallest number of products in good 

condition. ii) Speed means that the production process is not affected by the time 

taken for the inspection, i.e. that production speed is maintained or increased. 

Current methods aim at decreasing the number of false positives and false 

negatives. Ideally these variables should be 0%, however this is difficult to 

achieve because it depends on the kind of product that is being analyzed. The 

decision to decrease some of these variables affects the performance of AVI 

quality control. Some of the effects of the adjustment can be: to detect 100% of 

products free from defects and reject a margin of products in good condition; or 

to accept a margin of defective products together with all the products in good 

condition.  

 

Table 1. Examples of recent automatic visual inspection techniques 

Textiles Mamic et al (2000); Zhang, et al (2005)  [3, 4] 

Welding Liao (2003); Carrasco & Mery (2004)  [5, 6] 

Bearings  Liang-Yu L. et al (2005)  [7] 

Automobile doors and glass  Yun Koo Chung (1998)  [8] 

Vehicle wheels Mery et al (2002); Carrasco & Mery (2006)  [9, 10] 

Aircratf turbines Nguyen et al (1998)  [11] 

Printed circuits Park et al (2006)  [12] 

Food Pedreschi et al (2004)  [13] 

Glass bottles Mery & Medina (2004); Shafait, et al (2004)  [14, 15] 

Wood Lihari & Obac (2005)  [16] 
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In general, the applications of AVI are found in different areas of industry, 

such as detection of faults in printed circuits, welds, glass, textiles, food, 

aluminum wheels, bearings, aircraft turbines, etc. Therefore, every inspection is 

directly related to the kind of material that it is desired to analyze (see Table 1). 

A method designed for recognizing faults in one material may not be applicable 

to another [2].  

One of the most important quality control areas for determining faults in 

welded structures has traditionally been done with radiographs, and in recent 

years with time-of-flight diffraction (TOFD) ultrasound techniques. Radiography 

allows the inspection of the quality of structures made from metals or other 

materials by making X-rays or γ-rays go through them. The faults are shown by 

the different light intensities generated by capturing the energy transmitted by the 

radiation on the radiographic images [17]. Ultrasound techniques use high 

frequency sound waves to detect the faults. TOFD is based on measuring the time 

and amplitude taken by the wave to travel from the emitter to a receptor along the 

weld. The faults are revealed by an alteration of the waves if they are found 

between the surface and the background of the material [18]. The above 

techniques have the advantage that the analyzed material is not destroyed during 

the inspection process, but both share the same problems of manual quality 

control, because the quality of the inspection is largely dependent on the quality 

and training of the inspector. 

The field that covers nondestructive tests is known as NDT, and it involves 

various inspection techniques whose objective is to ensure that the design and 

operation requirements are safe and reliable. For that purpose different inspection 

techniques have been developed [19], the most common of which are the 

methods of radiographic analysis and of ultrasound described above. According 

to Moura et al [20], ultrasound methods have comparative advantages over 

radiographic methods as they avoid the effects of ionizing radiation on the 

operators and the use of radiographic films or plates which in some cases degrade 

the quality of the images [21]. However, classification of defects through 

ultrasound methods is often questioned because it is highly subjective, since the 

analysis and identification depend exclusively on the experience and knowledge 

of the operator. On the other hand, radiographic methods are the most widely 

used as inspection methods of welds in NDT. Their development and research 

continue being applied in industry and in science, leading to technical and/or 

economic advantages [22]. 
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According to Liao [5], most radiographic inspection procedures have three 

parts: segmentation of the weld joints on the background,
a
 segmentation of the 

flaws on the weld joints, and classification of the flaws. Our research begins with 

the second step, i.e. the position of the weld joint is known. Therefore, our 

approach consists in segmenting the largest number of flaws in the welds. 

Segmentation is commonly considered one of the most complex tasks in image 

processing [24]. Research in this field is extensive, but it is specific to the 

material that is being analyzed. In this research, different strategies and methods 

have been evaluated, oriented at the detection of faults in images of welds 

supplied by BAM
b
. 

This chapter is organized as follows: Section 2 presents the state of the art in 

flaw detection in welds; Section 3 presents the segmentation methods and the 

solution scheme developed in this study; Section 4 presents the results obtained; 

and Section 5 presents our conclusions. An extended version of this article may 

be found in [25]. 

 

2.  State of the Art 

 

There are structures that use welds for critical functions, such as high pressure 

equipment, chemical compounds, etc, where any kind of flaw can trigger 

catastrophic consequences. The conventional forms for detecting welding flaws 

are by means of visual inspection of radiographic images. The images are 

generated by using X-rays and γ-rays which penetrate the material generating a 

radiological image on a photographic plate. Flaws are detected due to variations 

in the density of the material (see Fig. 1). Nonetheless, manual interpretation  

of flaws can generate subjective and imprecise results which require a great  

deal of time and are inconsistent in that they depend on an inspector for their 

analysis [5].  

Due to the problems associated with manual detection, there is currently a 

great deal of work and research on non-destructive testing (NDT) methods for 

detecting welding defects. The objective is to develop an automated method for 

the detection of defects that is precise and objective. Some of the most important 

achievements in this area are presented below.  

                                                           
a An application to determine the position and orientation of welded joints is available in [23]  
b The images for this research are part of a set of radiographic images of welds generated by the 

Federal Institute for Materials Research and Testing, Berlin (BAM). 
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Gayer et al [26] proposed a method that can be summarized as having two 

steps: i) A quick search for potential defects in the X-ray image: Assuming that 

the defects will be smaller than the regular structure of the test piece, potential 

defects are classified as those regions of the image where higher frequencies are 

significant. The spectrum of the X-ray image is determined with the help of a fast 

Fourier transformation, which is calculated either row by row or column by 

column in small 32×32 windows. When the sum of the higher frequencies of a 

window is greater than a given threshold value, the entire window is marked as 

potentially defective. Another possibility is suggested by the authors as part of 

this task: A window is selected as potentially defective when the sum of the first 

derivative of the rows and columns of a window is large enough. ii) Identification 

and location of the true defect: Because of the time-consuming nature of this 

step, only those regions which were previously classified as being potentially 

defective were studied here. Two algorithms were developed here as well. The 

first leads to a matching between the potential defect and typical defects, which 

are stored in a library as templates. Whenever a large resemblance between the 

potential defect and a template is found, the potential defect is classified as a true 

defect. The second algorithm estimates a defect-free X-ray image of the test 

piece by modeling every line of an interpolated spline function without special 

consideration for the potentially defective region. Following this, the original and 

the defect-free images are compared. True defects are identified when large 

differences occur compared to the original input image. 

Lawson and Parker [27] proposed that artificial neural networks (ANN) be 

used for the automated detection of defects in X-ray images. The method 

generates a binary image from the test image where each pixel is either 0 when a 

regular structure feature of the piece exists or 1 when a defect is detected. This 

entails the supervised learning of a multi-layer perceptron network (MLP) where 

Radiation 
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Digital radio-
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Figure 1. (a) Flaw detection scheme through radiation of weld. (b) Radiation over material flaw 

captured on a radiographic plate. 
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an attempt is made to obtain detection from training data. A back propagation 

algorithm is used for the assignment of weights within the MLP. The authors use 

one or two hidden layers in the network topography of the ANN, where the input 

signal corresponds to a window of m×m grey values in the X-ray image. The 

output signal is the pixel at the image centre in the binary image. Since the 

threshold value function for the neurons is sigmoidal in this method, a threshold 

is used to obtain a binary output signal. The desired detection in the training data 

was obtained with a segmenting procedure based on an adaptive threshold. 

During the experiments with five X-ray images, the authors showed that 

detection using ANN is superior to the segmenting method using adapted 

thresholds. 

Sofia and Reduane [28] proposed a method for automated recognition of 

welding defects. The detection follows a pattern recognition methodology:  

i) Segmentation: regions of pixels are found and isolated from the rest of the  

X-ray image using a watershed algorithm and morphological operations (erosion 

and dilation). ii) Feature extraction: the regions are measured and shape 

characteristics (diameter variation and main direction of inertia based on 

invariant moments) are quantified. iii) Classification: the extracted features of 

each region are analyzed and classified using a k-nearest neighbor classifier. 

According to the authors, the method is robust and achieves a good detection 

rate. 

Silva et al [29] proposed another welding defect classification method. In a 

first step, called image pre-processing, the quality of the X-ray image is 

improved using a median filter and a contrast enhancement technique. The defect 

detection follows the pattern recognition scheme mentioned above:  

i) Potential defects are segmented in the X-ray image. ii) Geometric and grey 

value features (contrast (C), position (P), aspect ratio (a), width-area ratio (e/A), 

length-area ratio (L/A) and roundness(R)) are extracted. The correlation between 

features and each defect class considered (slag inclusion, porosity, lack of 

penetration and undercutting) was evaluated by analyzing the linear correlation 

coefficient. iii) The most relevant features were used as input data on a hierarchic 

linear classifier [29]. In order to achieve a higher degree of reliability of the 

results, radiographic standards from the International Institute of Welding were 

used, with 86 films containing the main defect classes. The experimental results 

show that features P and e/A are able to classify the undercutting and lack of 

penetration classes. Nevertheless, the six mentioned features are required to 

obtain high performance by classifying the porosity and inclusion defects. 

Liao and Li [30] proposed a detection approach based on curve fitting. The 

key idea of this work is to simulate a 2D background for a normal welding bead 
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characterized by low spatial frequencies in comparison with the high spatial 

frequencies of defect images. Thus, a 2D background is estimated by fitting each 

vertical line of the weld to a polynomial function, and the obtained image is 

subtracted from the original image. The defects are detected where the difference 

is considerable. Wang & Liao [31] and Liao [5] proposed a fuzzy k-nearest 

neighbor, multi-layer perceptron neural network and a fuzzy expert system for 

the classification of welding defect types. The features used for the classification 

are distance from centre, circularity, compactness, major axis, width and length, 

elongation, Heywood diameter, and average intensity and standard deviation of 

intensity. Finally the (K-NN) and the (MLP) methods are used for classification. 

The results indicate that the (MLP) method is superior to the (K-NN) method, 

classifying 92.39% and 91.57% respectively. 

Mery and Berti [32] presented a new methodology based on texture analysis. 

Texture is one of the most important characteristics in pattern recognition, but it 

has seen limited use in the analysis of digital images in NDT. The referenced 

study examines the analysis of two types of texture features: those based on the 

occurrence matrix, and those based on the Gabor function. The proposed 

approximation uses the following methodology: i) Segmentation: the LoG edge 

detector is used. ii) Extraction of characteristics: the features of potential defects 

are extracted. iii) Classification: the most relevant features are used as input data 

for a statistical classifier. The best results have been achieved with a polynomial 

classifier, with 91% defect detection, and 8% false alarm rate. 

Li et al [33] proposed the development of an adaptive segmentation algorithm 

through genetic algorithms (GA) [34]. One of the major problems of 

segmentation is the determination of an appropriate threshold value that allows 

the separation of the relevant objects from the background. One of the most 

widely used methods is that of Otsu [35], because it determines an optimum 

threshold value for two classes. Unfortunately, the weld images contain more 

than two classes due to the surface of the object, light interference, etc. 

According to Li et al, the solution consists in generalizing Otsu’s method as a 

multiple class problem that can be tackled through a genetic algorithm. The 

results indicate that the designed method is adaptive and efficient at generating a 

segmentation in welded joints. 

Wang & Wong [36] presented a welding flaw segmentation method by means 

of the Fuzzy C-Means algorithm. The method consists of three steps: First, the 

top-hat and bottom-hat filters are applied. These filters extract the light from the 

objects generating low changes over the background of the image. The defects 

can thus be stressed and the background regions can be eliminated. Second, apply 

an adaptive wavelet thresholding filter (proposed by Donoso [37]). The purpose 
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of this filter is to eliminate the noise present in the signal while preserving the 

characteristics of the signal. According to Chang et al [38], this filter retains the 

sharpness of the edges of the defects better than the median filter. Third, use a 

fuzzy c-means (FCM) clustering algorithm. The clustering allows the assignment 

of a class depending on the degree of similarity that there is in the patterns that 

make it up [39]. One of the advantages of using this technique is that it allows the 

use of any number of characteristics and assign them to any number of classes, in 

addition to being applicable to instances in an unsupervised way. According to 

Wang & Wong, this technique has a more efficient performance compared to the 

method of Otsu, so the fuzzy c-means algorithm can detect a greater number of 

flaws in the welds. 

Movafeghi et al [40] proposed improving the quality of the digitized 

radiographic images to intensify the location and recognition of the flaws. The 

research proposes the independent use of three techniques, two in the space 

domain, filters through morphologic mathematics and pseudo-color, and one in 

frequency, the wavelet filter. The morphologic mathematics technique consists in 

first applying a median filter to reduce the noise level and retain the edges, and 

then using a bottom-hat and top-hat filter operation. The pseudo-color technique 

converts the image from grey levels to a new color image using color mapping. 

The objective is to improve the visualization of the flaws. The wavelets 

technique makes it possible to decompose the image into subcomponents in the 

frequency and time domains. The idea is to select only those coefficients that 

have more information and eliminate the high frequency coefficients, which 

contain most of the noise. Then the reverse transformation is carried out and the 

image is reconstructed. This methodology has been used in radiological 

applications in mamography [41]. The results indicate that the morphologic 

mathematics technique has the best performance, with Sn=90% and 1-Sp=0%. 

According to the authors, the application of wavelets has greater complexity and 

must have supervised training. 

Kleber et al [23] developed a methodology for extracting and limiting the 

weld joints in radiographic images. In various researches, analysis of the welds 

starts with a segmentation between the weld regions, discarding the background, 

but this requires a previous knowledge because it is necessary to determine the 

location, width, length and angle of the weld. Furthermore, the problem is 

increased due to markers and indicators that are inserted in the radiographic 

image. The methodology proposed by Kleber et al. uses a genetic algorithm (GA) 

[34] to locate the position of the welds using a model stored previously in the 

system. The objective is for the GA to determine the best position that matches 
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the stored model. The results have a 94.4% yield for detecting weld joints, either 

in different location, width, length and angle. 

The literature reviewed includes a large number and variety of methodologies 

for the detection of welding defects, such as interpolating the image’s 

background curves, neuronal networks, geometric characteristics, application of 

mathematical morphology and the watershed algorithm, texture analysis, etc. 

Research in this area continues largely because there are, as yet, no satisfactory 

results that allow the detection of all flaws without false alarms. Moreover, it is 

not possible to determine which of the research directions will improve the 

overall results, because each of them has room for improvement. The research 

presented in this paper is justified as it develops a new segmentation method 

which improves the process of automated detection of welding defects. 

Moreover, it also involves the development of a methodology that brings together 

some of the best characteristics of the reviewed studies, such as application of a 

median filter [29], comparison between a real image and a defect-free image 

[30], the use of mathematical morphology, and the watershed algorithm [28]. 

 

3.  Steps of the Proposed Segmentation Algorithm 

 

Segmentation consists in partitioning the image into disjoint regions, where each 

region is homogenous with respect to a given property, such as texture, grey 

level, type of color, etc., with the purpose of separating regions of interest for 

their later recognition [24]. Thus, the segmentation problem can be approached 

with different methods, which generally can be categorized into three types of 

techniques: those oriented to the detection of edges, pixel detection, and region 

detection [42].  

In our study the edge detection was done first using gradient approaches. The 

Roberts, Prewitt, Sobel, and Laplace of Gaussian [42] filters belong to this 

category. These calculate the gradient, and according to some threshold level 

determine if a possible edge exists. Subsequently the Canny filter [43] was 

reviewed. This filter uses a combination of techniques, such as the Gaussian 

filter, for the elimination of noise, as well as making use of directional gradients, 

thus allowing the selection of only those edges that are found within the specified 

threshold. In pixel detection we have thresholding [42], which is a widespread 

technique as it allows the conversions of an image in grey scale to a binary image 

in such a way as to separate background objects according to a specified 

threshold. The watershed transform [44] is used in region detection. This 

technique makes use of morphological mathematics and allows the generation of 

regions based on cavity filling, simulating a valley filling with water; as the water 
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level rises, adjacent regions start forming unions. We also studied the distance 

transform [45] and the manner in which it can improve segmentation quality by 

using the watershed transform. In this case segmentation is used with the purpose 

of separating known regions from “hypothetical defects”. These regions are made 

of true defects as well as false alarms, and it is the task of the classifier to 

correctly separate these two groups according to a set of geometric properties 

such as area, perimeter, invariant moments, etc., which are analyzed in the 

characteristic extraction process [9].  

The proposed segmentation process uses a combination of digital processing 

techniques which have been selected on the basis of experimental tests and 

analyses, the development of which is presented in Fig. 2. Each stage has been 

analyzed independently and globally, allowing the study of different variations 

and strategies. 

 

A) Noise Reduction: The purpose of this phase is to attenuate the largest amount 

of noise in order to improve the segmentation process. There are different types 

of noise in an image, such as Gaussian, impulsive, frequential and multiplicative 

noise [42], and for that reason reduction is difficult, especially in radiographic 

images. Even though there is a large number of noise reduction filters, in this 

work we analyzed three techniques: the average, the Gaussian, and the median 

filters. Each filter has the purpose of attenuating in the best way some kind of 

noise, and they are therefore evaluated specifically in the BAM images. 

According to the experimental tests carried out, the median filter has at least two 

advantages with respect to the average and Gaussian filters: i) it is a more robust 

indicator, because an unrepresentative pixel does not introduce its value in the 

result, and ii) it does not generate new pixels when working on the edges. The 

median filter is therefore much better for preserving the edges clearly. Other 

research has shown the advantage of using the median filter. Such is the case of 

flaw detection in glass bottles [14]. 
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Figure 2. Proposed segmentation process for the detection of flaws in radiographic images. 
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B) Bottom-Hat Filter: The bottom-hat filter is used to highlight structures with 

hypothetical flaws and separate them from the background [46]. This process 

consists of two stages: i) First, use the morphologic lock operator on the original 

image, for which it is required that the size of the nucleus applied to the lock 

must allow the elimination of most hypothetical flaws, and as a consequence a 

background similar to that of the original image is generated, but without flaws. 

ii) Second, use the subtraction operator between the original image and the 

modified image from the first stage. As a result, the smaller structures, which in 

general are flaws, are revealed because of their separation from the background 

(Fig. 3). 

 

C) Edge Detection: The purpose of this stage is to determine a separation of the 

edges of each potential flaw. At this point we define two strategies: edge 

detection with the Canny filter, and binary thresholding. i) The first strategy uses 

the method of Canny and the dilation, filling and erosion operations. It is seen 

that lines have formed around the detected structures (Fig. 4a.), but it is necessary 

to close them, since the objective consists in generating a set of closed regions 

from those lines and in that way segment the hypothetical flaws from the image’s 

background. The process continues with the application of the dilation shown in 

Fig. 4b. The use of this operator allows closing most of the open regions. Then 

the closed regions from the previous operation are filled; this process is 

illustrated in Fig. 4c. Finally, the erosion operator is applied to reverse the effect 

of the dilation and also determine more precisely the zones with flaws from 

already closed regions. 

The method of Canny detects more precisely the edges of the structures 

because it is less sensitive to noise. Since it uses a Gaussian filter to decrease it; 

however, it generates a large amount of uncertain edges, and for that reason it is  
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Figure 3. (a) Original image; (b) Application of the lock operator to the original image;  

(c) Difference between images (a) and (b). 
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necessary to carry out the process of dilation, filling and erosion. The 

disadvantage lies precisely in the generation of open edges, as seen in Fig. 4d; the 

dotted arrow B indicates a line that has not closed and was detected by the Canny 

method, but that line does not form a structure that can be closed, even though 

during the process of dilation and filling it has increased its thickness; the erosion 

operation returns it to its original state. In another zone of Fig. 4, arrow A 

indicates the formation of a curve, which suggests the presence of a structure 

with flaws, however once again the dilation process does not generate a closed 

region.  

The binary thresholding strategy consists in applying this operator to the 

result generated by the bottom-hat filter (Fig. 3c). In this way closed regions are 

obtained that can be defined by a given threshold. If it is desired to increase the 

collection of regions, the value of the threshold is decreased so that it allows a 

greater number of grey levels to pass; conversely, if the threshold is increased, a 

smaller number of regions are collected. However, the use of this operator 

generates noise.  

 

(c) (d) 

50 100 150 200 250
(b) (a) 
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B 
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Figure 4. (a) Generation of edges with the method of Canny, (b) Dilation of the edges, (c) Filling of 

the closed regions, (d) Erosion of the structures. 
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The solution consists in applying the opening operator, which results in the 

generation of an image with low noise level and with uniform and closed 

structures. The opening operator can be adjusted by changing the size of the 

structures with which erosion and dilation are applied (Fig. 5b). 

The main disadvantage compared to the previous strategy is due to the lower 

detection of edges; the results show that the Canny method generates a large 

amount of edges in the form of lines without the possibility of closing them. On 

the other hand, the advantage of binary thresholding consists in generating most 

of the regions with already closed flaws. 
 

D) Sectioning of original image: Sectioning requires the application of binary 

thresholding. The idea consists in highlighting and segmenting only those regions 

with hypothetical flaws. In this point we define two strategies: i) The first 

consists in rescuing the pixels of the original image from the result of the binary 

thresholding. The previous result is used as a template that is superimposed on 

(a) (b) 

 

 
 

Figure 5. (a) Binary image produced by thresholding. (b) Application of aperture to image (a). 
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50

 

 
 

Figure 6. (a) Binary image from binarization with a given threshold. (b) Copy of pixels of the 

original image in levels of grey. 
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the original image (Fig. 6), and in this way it is defined that all the zones or 

pixels that are black are turned into white, and the white pixels of the binary 

image are used to copy all the pixels of the original image in the same position. 

ii) The second strategy uses the distance transform over the white regions, to 

generate a grey scale surface depending on the distance of its center with respect 

to its edges (Fig. 7). The purpose is to have a map of the structures with flaws, 

generated either through the distance transform or as a copy of the original 

image, because the next process uses the grey levels for segmentation through the 

watershed transform. 

When the distance transform is applied to a binary image that has an 

anthropomorphic shape, undesired results are obtained for later watershed 

analysis, because the resultant grey scale may not necessarily represent the 

surface that it is desired to divide. If there are closed circular figures, the 

differences can be smaller because the resultant formation of the distance 

operator has the same characteristic as the original image. However, the images 

that are being studied usually have quite varied shapes and grey scales, and do 

not represent exact shapes like those mentioned above. From this standpoint the 

application of the distance transform may not be recommended for the kinds of 

flaws that are being analyzed, because it does not represent the shape of the grey 

levels of the original image. 

 

E) Modification of minima: The modification of minima is part of the strategy 

called “Homotopy modification” [47], which has allowed the avoidance of over 

segmentation and the generation of more precise segmentation. However, it is 

important to determine the number of pixels that make up the minimum because 

a variation in this figure can generate a greater or smaller number of hypothetical 

flaws (Fig. 8).  
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Figure 7. (a) Original pixels from binary mask, (b) Distance transform applied to a binary mask. 
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F) Watershed transformation: The final tool used is the watershed transform. 

This technique, in combination with the modification of minima, allows the 

segmentation of structures in the interior of the flaws, because the external 

segmentation has been carried out previously in the process of binary 

thresholding. The general segmentation process, especially the binary 

thresholding stage, has facilitated the generation of the majority of the structures 

and their edges. It has been shown that the watershed transform by itself does not 
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Figure 8. (a) Binary image. (b) Sections of the binary image on the original image, (c) Calculation 

of the minimum points of the cut image, (d) Superposition of the minima on image (b). 

 

(c) 

(d) 

(a) (b) 

(e) (f) 

 

 
 

Figure 9. (a) Denied binary image. (b) Image with minima superposition. (c) Separation of regions 

by watershed. (d) Watershed lines. (e) Segmented binary image. (f) Superposition of the cuts on 

the original image. 
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generate the segmentation of the defects as it segments the entire image, thus 

highlighting the importance of the step prior to its application. For that reason, 

we apply the watershed transform on the structures that can be flawed, because 

only those regions are segmented and the zones adjacent to the flaws, which have 

been discarded in the bottom-hat process, are not considered. The whole process 

is described in Fig. 9. 

As the threshold is increased, the segmented regions decrease, and moreover 

they tend to have a smaller internal area (Fig. 10). Other process variables, such 

as bottom-hat filter, cut-off point selection, and dilation and erosion operations, 

influence the number and shape of the regions. However, modifying the variables 

generates different results, and in some cases this change can lead to imprecise 

segmentation, and thus it is important to analyze the effect of the modification of 

each variable, and how it affects the final result (Fig.10). 

The resultant segmentation generates an erroneous division not shown in the 

previous process. For example, if the modification of the minima process is 

carried out directly on the original image, the result generates a segmentation 

with respect to the whole image and not on the flawed regions (Fig. 11a). Also, in 

the case of applying the watershed transform to the original image, without the 

cuts processing and without the modification of the minima, an over 

segmentation is generated that does not allow either the determination of the 

flawed regions or the determination of their location (Fig. 11b). 

(a) (b) 

 

 
 

Figure 10. (a) Segmentation of the image with threshold = 3; (b) Segmentation of the image with 

threshold = 5. 
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Summary of the proposed methodology. Every stage of the method proposed 

in Fig. 2 is respresented in each of the six images of Fig. 12. The image 

generated at the end of the process with the watershed transform represents the 

internal and external segmentation of each region. 

(c) (b) (a) 

(d) (e) (f) 

 

 
 

Figure 12. Summary of the proposed segmentation process: (a) Image after application of the 

median filter. (b) Application of the bottom-hat filter. (c) Application of binary thresholding.  

(d) Application sectioning process. (e) Modification of minima. (f) Application of the watershed 

transform. 

(a) (b) 

 

 
 

Figure 11. (a) Watershed segmentation without separation of the regions. (b) Watershed 

segmentation without the “Homotopy modification” processing. 
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4.  Results 

 

The receiver operation characteristic (ROC) analysis is commonly used to 

measure the performance of a two-class classification. In our case, each feature is 

analyzed independently using a threshold classifier. In this way a hypothetical 

flaw is classified as a ‘no-defect’ (or ‘defect’) if the value of the feature is below 

(or above) a threshold value. The ROC curve represents a ‘sensitivity’ (Sn) versus 

‘1-specificity’ (1-Sp), defined as 

 
n

TP
S

TP FN
=

+  
1 p

FP
S

TN FP
− =

+

 (1) 

where TP is the number of true positives (correctly detected defects), TN is the 

number of true negatives (correctly detected no-defects), FP is the number of 

false positives (false alarms, or no-defects detected as defects), and FN are false 

negatives (flaws detected as no-defects). Ideally, Sn = 1 and 1-Sp = 0, which 

means that all defects were found without any false alarms. The ROC curve 

makes it possible to evaluate the performance of the detection process at different 

points of operation (as defined for example by means of classification 

thresholds). The area under the curve (Az) is normally used as a measure of this 

performance as it indicates how flaw detection can be carried out: a value of  

Az = 1 indicates an ideal detection, while a value of Az = 0.5 corresponds to 

random classification [48]. 

The analysis of the ROC curve is carried out according to the method 

proposed in [49]. For each image, an ideal detection was achieved using visual 

interpretation. The methodology was to create an ideal binary image (‘1’ is defect 

and ‘0’ is non-defect) according to the visual information with the Microsoft 

Paint software, using the largest scale (zoom = 800%). The results obtained with 

our algorithm were then compared with the ideal binary image. Thus, the values 

for TP, TN, FP and FN were tabulated as shown in Fig. 13. 

 SEGMENTED 

 IMAGE 

TN 
FLAW 

TP 

FP 

FN 

Border generated 

by segmentation 

Ideal Flaw Border 

 IDEAL IMAGE 

Background Background 

FLAW 

 
 

Figure 13. Representation of the differences between the ideal and segmented image. 
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Table 2 presents a summary of the images analyzed in this study. The column 

labelled “Number of ideal regions” presents the number of real regions that must 

be segmented. The sensitivity and 1-specificity analysis is carried out pixel by 

pixel using the method proposed in [49]. For this reason, the results differ from 

those presented in [32], where the regions are analyzed as sets, and not pixel by 

pixel. The images used correspond to ten of the images catalogued by BAM for 

non-destructive testing in weld seams. These have been captured using a Lumysis 

LS85 SDR scanner in high density mode. An LUT linear fit has been used in 

order to reduce the grey levels of the original images from 12 to 8 bits, and they 

have been resized to leave only those areas that must be segmented. 

In order for the study of the images not to depend on the set analyzed, a 

generalized ROC curve has been developed. This curve incorporates tests that 

use the same values with the purpose of obtaining a set of optimum parameters 

that will allow the use of this filter on an image that is not part of the study. In 

order to calculate the curve presented in Fig. 14, the values for TP, FN, FP and 

TN have been added to each test in the study, taking into account that the values 

being added must be generated on the basis of the same test for each image. 

Subsequently the ‘sensitivity’ and ‘1-specificity’ values are calculated. 

The ROC curve in Fig. 14 has an area of 93.58%; its best point has an 87.83% 

sensitivity and a 9.40% 1-specificity. The next-best point has 86.72% sensitivity 

and a 7.98% 1-specificity. In the latter case the decrease in false alarms is due to 

the increase in the area of detection, which means that regions with less than 27 

pixels are not considered as ‘hypothetical flaws.’ 

Table 2. Summary of the segmented images and their best sensitivity and 1-specificity values 

Best operational points 

Image Name 

Number of 

ideal 

regions 

Regions 

segmented 

by the 

process 
Sensitivity 1- Specificity 

Z
A  

BAM5.tif 273 495 90.04% 7.62% 93.08% 

12R_M.tif 36 933 96.93% 3.87% 98.03% 

13R_M.tif 62 520 90.38% 7.47% 95.22% 

22R_M.tif 23 678 94.21% 4.29% 97.44% 

28R_M.tif 47 1062 91.08% 5.10% 94.34% 

31R_M.tif 11 179 99.51% 0.58% 99.52% 

39R_M.tif 90 1110 87.68% 7.86% 94.36% 

40R_M.tif 30 731 82.28% 3.74% 91.31% 

106R_M.tif 97 836 81.24% 6.17% 89.90% 

107R_M.tf 59 2461 80.65% 10.96% 89.41% 
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The proposed filter has been compared with the method developed in [32]. To 

carry out the comparison a binary image was been generated manually which 

contains all the real flaws of the original image. Once the segmented regions 

have been determined with the use of the proposed filter and the texture analysis 

filter, the results can be compared against the ideal binary image. As can be seen 

in Table 3, the results show that the sensitivity for the method developed in this 

research is 90.94%, compared with 64.13% for the texture analysis method. 

Moreover, the 1-specificity is 7.62% compared to 4.86% for the texture analysis 

method. This shows that the proposed method detects a greater number of false 

alarms, but at the same time detects a greater number of real flaws. 

The purpose behind having a smaller number of segmented regions is to 

reduce processing time for the later AVI stages. The type of region being 

analyzed is important for the process, and consequently the objective must be to 

decrease the number of segmented regions while simultaneously having a low 

number of false alarms. To this end the segmentation process must be as precise  

 

Table 3. Comparison between the developed filter and the  

texture analysis filter for the BAM-5 image 

Image  Process 
Segmented 

regions 

Classified 

regions 
Sensitivity 1-Specificity 

Bam5.tif 

Bottom-hat 

segmentation 

(proposed filter) 

495 (na) 90.04% 7.62% 

Bam5.tif Texture Analysis [32] 1419 187 64.13% 4.86% 

ROC Curve

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00

1- Specificity

S
e
n

si
ti

v
it

y

AZ = 0.936

 
Figure 14. ROC Curve for TP, FN, FP, and TN values determined from a set of tests with the same 

parameters. 
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as possible in detecting real defects. These results indicate that the proposed filter 

has two advantages: the first is a reduction in the number of regions, which 

implies that during subsequent characteristic-extraction and classification 

processes, fewer regions need to be analyzed, thereby reducing processing time. 

The second advantage consists in having a high percentage of regions with real 

flaws and a low percentage of false alarms. This implies that when the 

segmentation process is applied, the majority of real flaws are included. 

 

5.  Conclusions 

 

One of the main filters used in the detection of hypothetical flaws is the bottom-

hat filter. Should the flaw have a minimum of contrast with the background, this 

filter will not detect it. Noise plays an important role in the result of segmentation 

because if it is too high, a larger mask must be applied, and thus low intensity 

flaws disappear. On the other hand, if a smaller mask is used, a large number of 

regions will be generated which will, for the most part, correspond to noise 

regions. 

The analysis of the results indicates that the proposed filter is sensitive to 

noise: as noise increases, a larger number of regions is detected, and when noise 

decreases fewer regions are segmented. This effect can be minimized by using a 

median filter because of its noise attenuating properties and preservation of edge 

structure. 

This work has been compared with the method developed in [32]. The latter 

method carries out segmentation by means of the LoG filter, extraction is carried 

out through the co-occurrence matrix and the Gabor function, and finally the 

classification process is implemented through the use of the polynomial, 

Mahalanobis and near-neighbor methods. Clearly, comparison with the proposed 

filter is not entirely fair, as only the segmentation process has been carried out. 

However, the results may improve on application of the next stages of AVI such 

as extraction of characteristics and classification. The results indicate that the 

sensitivity of the proposed method is 90.94%, compared to 64.13% for the 

texture analysis method. Also, 1-specificity is 7.62% compared to 4.86%, 

respectively. 
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