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Abstract. Automated visual inspection is defined as a quality control
task that determines automatically if a product, or test object, devi-
ates from a given set of specifications using visual data. In the last 25
years, many research directions in this field have been exploited, some
very different principles have been adopted and a wide variety of algo-
rithms have been appeared in the literature. However, automated visual
inspection systems still suffer from i) detection accuracy, because there
is a fundamental trade off between false alarms and miss detections; and
ii) strong bottleneck derived from mechanical speed and from high com-
putational cost. For this reasons, automated visual inspection remains
an open question. In this sense, Automated Multiple View Inspection, a
robust method that uses redundant views of the test object to perform
the inspection task, is opening up new possibilities in inspection field
by taking into account the useful information about the correspondence
between the different views. This strategy is very robust because in first
step it identifies potential defects in each view and in second step it
finds correspondences between potential defects, and only those that are
matched in different views are detected as real defects. In this paper, we
review the advances done in this field giving an overview of the multi-
ple view methodology and showing experimental results obtained on real
data.

Keywords: automated visual inspection, multiple view geometry, in-
dustrial applications.

1 Introduction

Visual inspection is defined as a quality control task that determines if a product
deviates from a given set of specifications using visual data1. Inspection usually
involves measurement of specific part features such as assembly integrity, surface
finish and geometric dimensions. If the measurement lies within a determined
tolerance, the inspection process considers the product as accepted for use. In
1 For an extended overview of automated visual inspection, the reader is referred

to excellent review papers by Malamas et al. [1] and Newman and Jain [2]. The
information given in this paragraph was extracted from these papers.
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industrial environments, inspection is performed by human inspectors or auto-
mated visual inspection systems. Although humans can do the job better than
machines in many cases, they are slower than the machines and get tired quickly.
Additionally, human inspectors are not always consistent and effective evalua-
tors of products because inspection tasks are monotonous and exhausting, even
for the best-trained experts. Typically, there is one rejected in hundreds of ac-
cepted products. Moreover, human experts are difficult to find or maintain in
an industry, require training and their skills may take time to develop. It has
been reported that human visual inspection is at best 80% effective. In addition,
achieving human 100%-inspection, where it is necessary to check every product
thoroughly to ensure the safety of consumers, typically requires high level of re-
dundancy, thus increasing the cost and time for inspection. For instance, human
visual inspection has been estimated to account for 10% or more of the total
labor costs for manufactured products. Moreover, in some environments (e.g.,
underwater inspection, nuclear industry, chemical industry, etc.) human visual
inspection may be difficult or dangerous. For these reasons, computer vision has
been gradually replacing more and more human inspection.

Comprehensive reviews on automated visual inspection are given in [1–4]. Ac-
cording to these surveys, approaches developed for automated visual inspection
are tailored to the inspection task, i.e., there is no general approach applicable
to all cases because the development is an ad hoc process. Although there are
several approaches that have been developed in the last 25 years, automated
visual inspection systems still suffer from i) detection accuracy, because there is
a fundamental trade off between false alarms and miss detections; and ii) strong
bottleneck derived from mechanical speed and from high computational cost.
For this reasons, automated visual inspection remains an open question. In this
paper, we present recent advances on Automated Multiple View Inspection, a
robust method that uses redundant views to perform the inspection task. This
novel strategy is opening up new possibilities in inspection field by taking into
account the useful information about the correspondence between the different
views of the test object. It is very robust because in first step it identifies po-
tential defects in each view and in second step it finds correspondences between
potential defects, and only those that are matched in different views are detected
as real defects. The paper gives an overview of the multiple view methodology
and show experimental results obtained on real data.

2 General overview of the multiple view approach

The principle aspects of an automated multiple view inspection system are shown
in Fig. 1. Typically, it comprises the following five steps: i) a manipulation system
for handling the test piece (manipulator, robot, etc.), ii) an energy source (light,
X-ray, etc.), which irradiates the object under test with, iii) image acquisition
system (CCD cameras, image intensifier, etc.) that register digital images of the
test piece, and iv) a computer to perform the digital analysis of the images and
to classify the test piece accepting or rejecting it.
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Fig. 1. Computer vision system for automated visual inspection.

In the computer-aided inspection, our aim is to identify defects automatically
using computer vision techniques. The general automated inspection process,
presented in Fig. 1, consists of image formation, preprocessing, segmentation,
feature extraction, detection/classification and multiple view analysis [5]. Typi-
cally, automated visual inspection using only one view does not follows the last
step. The mentioned six steps are explained in further detail:

i) Image formation: Images of the test object are taken and stored in the
computer. The human eye is only capable of resolving around 40 grey levels [6],
however in automated visual inspection grey level resolution must be a minimum
of 28 levels. In some applications with X-rays, 216 grey levels are used [7], which
allows one to evaluate both very dark and very bright regions in the same image.
On the other hand, color image systems are able to capture images in several
color spaces with 224 different colors [8, 9]. Nowadays, a digital image used in
automated visual inspection contains usually more than 220 pixels.

ii) Image preprocessing: The quality of the images is improved using con-
trast enhancement, noise removal and image restoration techniques. Typically,
image enhancement is achieved by histogram manipulation, and noise removal
by frame averaging or edge-preserving filtering [6]. Edge-preserving filtering is
important for defect detection, because it is desirable to smooth the noise with-
out blurring the edges. Moreover, image restoration involves recovering detail in
severely blurred images, which is possible when the causes of the imperfections
are known a-priori [10, 11]. This knowledge may exist as an analytical model, or
as a-priori information in conjunction with knowledge (or assumptions) of the
physical system that provided the imaging process in the first place.
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iii) Image segmentation: The digital images are divided into disjoint regions
with the purpose of separating the parts of interest from the rest of the scene.
Image segmentation plays one of the most important roles in real world computer
vision systems. In the last 40 years, this field has experienced significant growth
and progress [12]2. According to [13], monochrome image segmentation tech-
niques are classified into the following categories: histogram thresholding, fea-
ture space analysis based methods, edge detection based methods, region based
methods, fuzzy logic techniques and neural networks, and pointed out that most
of them can be extended to color images by representing color information in
appropriate color spaces. However, better performance in segmentation of color
images is achieved using vector-value techniques that treat the color information
as color vectors in a vector space provided with a vector norm [14]. In image
segmentation for detecting defects we aim to separate potential defects from
background.
iv) Feature extraction: Since some structural parts of the object could be
erroneously segmented as defectively regions, we denoted them as potential de-
fects. Subsequently, additional steps are required to eliminate the false alarms
of the potential defects. The first of these steps is feature extraction, which is
centered principally around the measurement of geometric and chromatic char-
acteristics of regions. Contrast based on crossing line profiles [15] and texture [16]
are very helpful to distinct defectively regions from its neighbors. After feature
extraction, it is important to know which features provide relevant information
about defects. For this reason, a feature selection [17] is performed to find the
best subset of the input future set that separates the real defects from the false
alarms. Methods based on sequential forward/backward selection achieve effec-
tive and fast results but they are suboptimal [18]. On the other hand, a branch
and bound method guarantees to find the optimal subset, although the complex-
ity is greater than the mentioned methods, it can be reduced considerably using
a fast technique [19].
v) Detection/classification: The extracted (and selected) features of each
region are analyzed in order to detect or classify the existing defects. We differ-
entiate between detection and classification of defects. Detection corresponds to
a binary classification, because in the detection problem, the classes that exist
are only two: ‘defects’ or ‘no-defects’, whereas the recognition of the type of de-
fect (e.g., voids, cracks, bubbles, inclusions and slags) is known as classification
of defect types [20]. Normally, the ‘defect’ class constitutes a very small fraction
of the total search area. Therefore, the ‘defect’ class will be either empty or
sparsely populated [21]. This implies that there are not sufficient data to train
a statistical classifier or statistically evaluate the performance of a detector. In
these cases, where the defect probability is very small, minimization of the error
probability is not a good criterion of performance, because it can be minimized
by classifying every region as ‘no-defect’ (in a domain where the classes are
distributed in a 1:99 ratio (skew = 102), the maximum likelihood gives 99%

2 Only last year, 194 papers with the word ‘image’ and ‘segmentation’ in the title field
were indexed by the Web of Science of ISI.
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accuracy). For this reason, the probability of detection is typically maximized
while keeping the probability of false alarms under a certain predefined value
(Neyman-Pearson criterion [22]). Other applications with skewed class distribu-
tion can be found in fraud detection [23] or target detection in hyperspectral
imaging [24]. In order to increase the samples of the defect class, simulation
of defects can be used [25]. The classifier is designed using well known pattern
recognition techniques, that can be categorize into generative and discriminative
approaches [26]. Generative learning focuses on generative description of samples
and tend to synthesize configurations from them. Principal component analysis
[17], linear discriminant analysis [17] and hidden Markov models [27] are typ-
ical generative classifiers that produce a probability density model for pattern
recognition. On the other hand, discriminative learning attempts to compute the
mapping for classification from input to output directly without modeling the
underlying distributions. It normally achieves superior performance than gener-
ative approach in many applications. Traditional neural networks [28] and sup-
port vector machines [29] are discriminative classifiers that attempt to maximize
the classification boundary margin of classes for recognition. Recent research on
combining generative and discriminative learning has shown that proper combi-
nations of two models outperforms pure generative or discriminative models [26,
30, 31].

vi) Multiple view analysis: Multiple view geometry is increasingly being used
in machine vision [32]. It describes explicit and implicit models which relates the
3D coordinates of an object to the 2D coordinates of the digital image pixel, the
geometric and algebraic constraints between two, three and more images taken
at different projections of the object, and the problem of 3D reconstruction from
N views. Since in last step certain ‘no-defects’ could be classified erroneously as
‘defects’, we use multiple view geometry as a final discrimination step. The key
idea is to gain more information about the test object by analyzing multiple views
taken at different viewpoints. Thus, the attempt is made to match or track the
remaining potential defects along the multiple views. The existing defects can be
effectively tracked in the image sequence because they are located in the positions
dictated by geometric conditions. In contrast, false alarms can be successfully
eliminated in this manner, since they do not appear in the predicted places on
the following images and, thus, cannot be tracked. The tracking in the image
sequence is performed using algebraic multi-focal constraints: bifocal (epipolar)
and trifocal constraints among others [32–34]. Multiple view analysis is a useful
and powerful alternative for examining complex objects were uncertainty can
lead to misinterpretation, because two or more views of the same object taken
from different viewpoints can be used to confirm and improve the diagnostic
done by analyzing only one image [33, 34].

Finally, the performance of an automated visual inspection method is as-
sessed using a validation technique (e.g., cross-validation, bootstrap and jack-
knife [17, 35]). Usually, some of the collected cases are removed before training
begins. Then when training is performed, the cases that were initially removed
can be used to test the performance of the inspection method on these test data.
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Thus, one can evaluates how well the method will inspect the test objects that
has not already examined. Confidence intervals, where the true values of the
misclassification error is expected to fall, can be obtained from the test sets.

3 Implemented multiple view approaches

Automated multiple view inspection was implemented in the quality control of
aluminum castings of the automotive industry using X-ray images [5]. However,
the methodology can be used in the inspection of other manufactured products.
In this section we present two approaches that were implemented using calibrated
and uncalibrated image sequences and their results obtained on real data.
i) Calibrated Approach: In [36] we performed the tracking using a calibrated
image sequence , i.e., the model 3D → 2D was a-priori known because it was ob-
tained in an off-line process called calibration [37]. The calibration of an imaging
system is the process of estimating the parameters of the model, which is used
to determine the projection of the 3D test object into its 2D digital image. This
relationship 3D→2D can be modeled with a transfer function F : R3 → R2.
Using this model the multi-focal tensors can be calculated in order to evaluate
the multi-focal constraints for the correspondences of the potential defects in
the image sequence [32]. The calibration was performed using the well-known
photogrammetric calibration [38], in which a calibration object whose geometry
in 3D space is known with high accuracy. Using this technique a true reconstruc-
tion of the 3D space without a scale factor is achieved. In the calibration, we
estimate the parameters of a geometric model based on n points whose 3D object
coordinates Mi are known, whose 2D image coordinates wi are measured, for
i = 1, ..., n. Using the model we obtain the reprojected points w′

i = F (Mi, θ),
i.e., the inferred projections in the digital image computed from the calibration
points Mi and a parameter vector θ. The calibration is performed in each image
of the sequence by minimizing the objective function defined as the mean-square
discrepancy between measured points wi and inferred points w′

i [32]. Usually,
the calibration problem is a non-linear optimization problem. In general, the
minimization of the objective function has no closed-form solution. For this rea-
son, it must be iteratively minimized starting with an initial guess θ0 that can
be obtained from nominal values or preliminary reference measurements.
ii) Uncalibrated Approach: The calibration is a very difficult task because
the iterative estimation of the parameters is very sensible to the initial guess. In
addition, the vibrations of the imaging system induce inaccuracies in the esti-
mated parameters of the model, i.e., the calibration is not stable and the com-
puter vision system must be calibrated periodically (off-line) in order to avoid
uncertainty. For this reason, we developed an approach based on the tracking of
potential detects in two views [39, 40] and in three views [40] using uncalibrated
image sequences, in which it was not necessary to calibrate the imaging sys-
tem. This new approaches track the potential defects based on a motion model
estimated from the image sequence itself. Thus, we obtain a motion model by
matching structure points of the test object in the images as shown in Fig. 2. The
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Fig. 2. Block diagram of the uncalibrated automated multiple view inspection: a) es-
timation of motion model, b) detection of defects [40].

structure points are matched using B-Spline curves and correlated curve sections
of the structure (see details in [39] and in [40] respectively). Using RANSAC [32],
the matched structure points are employed to estimated the bifocal and trifocal
tensors required for the multiple view analysis. In this sense, we do not calibrate
the image sequence, we only estimate the bifocal and trifocal tensors required
for the tracking. The great disadvantage of this approach is the inherent diffi-
culty in identification of the structure points (and thus the estimation of the
motion model) from the test object itself, when the images of the test object do
not significantly differ from each other in the sequence, e.g., a glass or a bottle
rotating around its vertical axis.

Once the system is calibrated (in the calibration approach) or the motion
model is estimated (in the uncalibrated approach) the same algorithm is used
to track the potential defects [41]. The tracking algorithm requires the bifocal
and trifocal tensors [32] between the views. In the first approach the tensors are
obtained from the projection matrices estimated after the calibration, whereas
in the second approach the tensors are obtained using corresponding points of
the test object in two and three views.

Table 1 summarizes the results obtained on real data using calibrated and
uncalibrated approaches. We calculate the performance of the identification and
the performance of the tracking separately. True positives are the number of
defects correctly detected. The true positive percentage is calculated related to
the number of the existing defects. False positives (or false alarms) correspond to
the number of ‘no-defects’ misclassified as ‘defects’. The false positive percentage
is given related to the number of detected potential defects. We present three
implementations of the calibrated approach. They perform the tracking in three,
four and five views (cases C-I, C-II and C-III respectively). We observe that the
number of false alarms in the identification is enormous. However, the results are
perfect for four views (case C-II) where all defects are detected without any false
alarms. The verification of the correspondence on three views flags too many false
alarms. On the other hand, with 5 views we cannot ensure the segmentation of a
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Table 1. Performance of calibrated and uncalibrated approaches.

defect in five views, for this reason some defects cannot be detected. We increase
the performance in the segmentation in the uncalibrated approaches reducing
the number of false alarms significantly. In case U-I, we perform the tracking
in only two views using B-spline curves for the motion model. In case U-II and
U-III, the tracking is done in two and three views respectively using correlated
curve sections of the structure for the motion model. The results of case U-III
are promising because all defects to be tracked, i.e., defects that are present
in three views, could be tracked, with only a few number of false alarms. We
observe that the performance obtained in calibrated approach is higher, however
the calibration is in many cases an excessively difficult and unstable task that
can be avoided using an uncalibrated approach.

4 Conclusions

Automated visual inspection remains an open question. Many research directions
have been exploited, some very different principles have been adopted and a wide
variety of algorithms have been appeared in the literature of automated visual
inspection. Although there are several approaches in the last 25 years that have
been developed, automated visual inspection systems still suffer from i) detection
accuracy, because there is a fundamental trade off between false alarms and miss
detections; and ii) strong bottleneck derived from mechanical speed (required to
place the test object in the desired positions) and from high computational
cost (to determine whether the test object is defective or not). In this sense,
Automated Multiple View Inspection offers a robust alternative method that
uses redundant views to perform the inspection task. We believe that the method
is opening up new possibilities in inspection field by taking into account the
useful information about the correspondence between the different views of the
test object. Two approaches were developed in the last years: the calibrated
and the uncalibrated approaches. Both of them achieve very good performance.
However, the calibration of the first approach is a very complicated task, and the
identification of structure points in the second approach is inherently difficult
when the images of the test object do not significantly differ from each other
in the sequence. In order to avoid the mentioned problems, we are working on
an on-line calibration of the multiple view system using a calibration object
attached to the test object which is imaged in all views. Thus, the images have
an enough number of points to calibrate the system.
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